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What about the |
uncertainty? (el

What uncertainty?




Importance of Type Curves

“Building type wells is arguably the most important exercise in
decision making for unconventional resource plays. The type well
and its associated uncertainty are often the largest drivers behind
whether a project will be economic, or not. However, appropriately
characterizing type well uncertainty is not trivial, and is often
overlooked.”

SPE-201556-MS Miller, Dauncey and Gouveia
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Why should | care about uncertainty & risk?

* Market capital loss - investors do not react well to production guidance shortfalls
e Cashflow shortcomings

* Possible reserve write-downs

Impacts on stocks of companies that fell short of their production guidance

Reduced by 40% in 8 months Reduced by 50% in 7 months Reduced by 30% in 2 weeks Reduced by 40% in 8 months
Reduced by 70% in 8 months Reduced by 26% in 1 month Reduced by 40% in 8 months Reduced by 40% in 8 months
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Commodity Price uncertainty can punish even the best plans
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... and we’re terrible at predicting Commodity Prices
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7 Steps
to
Minimize Uncertainty & Risk



7 Steps to Minimize Uncertainty & Risk

Understanding Uncertainty

Improving the quality and quantity of data
Representativeness

Minimize the Addition of Uncertainty

Test Downside Scenarios using Aggregation

Monitor & Update Data

=l e Y e

Decision Transparency
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Understanding Uncertainty
to inform value-based decision making

Step #1
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My definitions (for the purpose of this presentation)

Uncertainty = Range of possible outcomes

* Provides the context to assess Risk

Risk = Threat of loss ($)

* Inherently value-focused

Outcomes = production or value outcomes

Features = input data

© Omnira Software. All Rights Reserved
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These should,
ideally, always
be considered
together.




How do you measure uncertainty?

10-year-old = iioohhnoo = | don’t know?
12-year-old = The question is absurd

Wife = With an uncertainty ruler!
* While we can’t measure uncertainty, we can use a proxy for it = P10:P90 ratio
« Communicates the range of outcomes with an 80% confidence interval
(i.e. 80% of outcomes fall between the P10 and P90 values)
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P10:P90 ratio proxy for uncertainty (80% confidence)

Mode e P10:P90 ratio is an expression of the range of

,

AV Mean

possible outcomes

Median . .
* This is a proxy used to “measure” (estimate)

uncertainty

* The higher the P10:P90 ratio, the further the
Mean is from the Median (P50) = a lower
likelihood of achieving the Mean or more




Example Probit Plot

24 Month Cumulative Gas

359 Wells - Group By: Date - On Production Year - Gas (mcfiwell)
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598 | outcomes will fall between
@
P99 el 1 >=764,361 & <=4,405,814
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100,000 1,000,000 10,000,000
Volume (mcf/well)
Mar 06, 2023, 8:33 FM VERDAZO™
= + Probit Mean(2,310,478) P10/P90(6) (= 2019 fo < 2022) @ == 2019 to < 2022 (359)
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Value focus = 50% EUR as a Proxy for 80% Value

Percentage of Cumulative PV and Reserves vs Time

100%

]

Percentage of The Cumulative

20% An illustration that production of 50% of a well’s EUR is a reasonable
o proxy for 80% of a well’s value (on a horizontal multi-stage well).
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http://www.roseassoc.com/

50% EUR Comparison Across Plays
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Uncertainties that Affect Value

Optimistic estimates become exposed when prices fall

highest uncertainty

Cashflow

Production

Drilling &

Completion

Capital

Opex

Timing (delays)

Migration, Trap Integrity, Timing, Maturation ...

Dimensional (thickness, area, volume, depth)

Geochemical (source-rock type, total organic content, maturity...)

Front-end costs (land, drilling, completion, data acquisition, overhead)

Reservoir characteristics (net/gross, porosity, permeability, HC recovery % ...)

Well Performance (initial rate, decline rate, time to BDF, b-value...)
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Cognitive Biases Can Contribute Uncertainty

Confirmation Social Proof Anchoring
Survivorship Availability
Conservatism Clustering Recency
Salience Overconfidence
Ostrich Bandwagon

HiPPO = Highest Paid Person’s Opinion
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Primary Risk & Uncertainty Elements That Drive Decisions

Risk Exposure Well Design
(market) (cost)

* Available funds
Balanced * Size of the prize
alans
Seen * Threat & magnitude of loss

Subsurface
Response
(the prize)
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Improving the quality and quantity of data

Step #2



How can | reduce uncertainty in production forecasts?

Ask Chat GPT

Reducing uncertainty in production forecasts is an important goal for petroleum companies, as it can help to improve planning and decision-making. Here
are some strategies that can help to reduce uncertainty in production forecasts:

1.

Improve data quality: Accurate production forecasting relies on high-quality data. This includes data on reservoir characteristics, production history, and

well performance. BY improving the quality and quantity of data, you can reduce uncertainty in

your production forecasts.

Use multiple methods: There are different methods that can be used to forecast production, including analytical models, numerical simulations, and
machine learning algorithms. By using multiple methods and comparing the results, you can get a better understanding of the uncertainty in your
forecasts and identify areas where further data or analysis is needed.

Incorporate uncertainty analysis: Uncertainty analysis can help you to quantify the level of uncertainty in your production forecasts. This can be done
by using techniques such as Monte Carlo simulation, which involves running multiple simulations with different input parameters to generate a range of
possible outcomes. By incorporating uncertainty analysis into your forecasting process, you can better understand the range of possible outcomes and
develop more realistic production forecasts.

Monitor and update forecasts: Production forecasts are not static and can change over time as new data becomes available or conditions change. By
monitoring production closely and updating your forecasts regularly, you can reduce uncertainty and improve the accuracy of your predictions.

Engage experts: Engaging experts in the field, such as geologists, reservoir engineers, and production analysts, can help to identify key factors that may
impact production forecasts and provide insights into how to reduce uncertainty. Collaboration with experts in the field is an important step towards a
more accurate production forecast.
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Subsurface Data is as important as Completion Data

...and harder to come by

Importance of feature group

HorizontalLength(ft) Importance of individual feature

S Completion = Controllable

Proppantintensity(lib_ft)

ProppantConcentration(llb_gal)

Depth-TrueVertical(ft) |

e Subsurface = Non-controllable
o (but selectable... you can choose where you drill
your well)

00 0.1 02 0.3 04 05 0.6 07
Importance

Using ML in multiple plays we consistently see that completions & geoscience data contribute (near) equally to production predictions.



Subsurface Data = #1 opportunity for more, & better, data

* Biggest data opportunity to reduce uncertainty & improve predictability
* Data is rarely centralized and maintained as a single “source of truth”

* Inconsistent cut-offs and nomenclature across multiple geologists
working on a single play

Rarely is there a formalized process to “Look Back” at results and
test/recalibrate/update subsurface data in a centralized location
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Feature Interdependence (Correlation) — A Challenge
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Reduce Redundancy With Feature Engineering

Highly Correlated = Redundancy Feature Engineering (New Information)
* Length * Length
* Total Proppant * Proppant Intensity (Ibs/foot)

e Total Fluid * Proppant Concentration (lbs/gallon)
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Don’t rely on correlations as a measure of importance

Proppant Intensity vs Cumulative Gas/100 m Completed Length

541 Wells
160
R%0.0357
R:0.1889
120
(]
—
=)
= z
: - o 3
Bin the datausing mmp & |2
. c H
a well design feature, oo 3
%]
I (]
(or geological feature) ~
% 40 ° o°
= .
0 -
0 100,000 200,000 300,000 400,000
Gas (mcfiwell)100m Length
Data provided by IHS Information Hub - Mar 14, 2023, 4:52 PM VERDAZQ™
= | inear @WCFD - Proppant Placed (avg tonnes per 100m Completed Length)

7

Plot percentile of the production measure
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Binned Cumulative Probability Plots Can Convey Clear Trends

Same data as previous slide

Cumulative Gas/100 m Completed Length binned by Proppant Intensity
541 Wells - Group By: WCFD - Proppant Placed (avg tonnes per 100m Completed Length) - WCFD-Gas (mcfiwell}/100m Length
0.00 ? c@ga @ (] ° @ ]
o € 4 ¢ ) ¢
ags @@ ? PP °
o § . of
20.00 ;‘ o e
Gg ’
80
40.00 . . .
2 Binning by Proppant Intensity shows a clear
g pattern that Production Performance increases
5000 as this Well Design Feature increases.
20.00
% 4
100.00 g{
0 100,000 200,000 300,000 400,000
WCFD-Gas (mcfiwell)100m Length
Data provided by IHS Information Hub - Mar 14, 2023, 4:48 PM WVERDAZO™
@ <60 (47) @ ==60to <80 (98) @ ==801to <100 (160) @ ==100t0 < 120 (163) @ == 120 (73)
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Representativeness (Analogue Selection)
finding the balance between Sample Size & Relevance

Step #3

© Omnira Software. All Rights Reserved
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Analogue Selection

* Analogue wells should have a similarity on which a comparison may be based
anollI r)epresent the range of possible outcomes (i.e. don’t just select the best
wells).

» Selecting wells with similar characteristics may reduce the range of uncertainty
in your type-well curve.

28

 Common criteria for selecting similar wells include:

1) Geology

2) Reservoir

3) Waell Design

4) Well Density

5) Operational Design
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Is “Representativeness” even possible?

For example, analogs should have the same or similar:

Geology — lithology, principal mineralogy, clay content, total organic carbon (TOC), etc.
Depth, temperature and pressure
Fluid composition and properties

Reservoir drive mechanism

Spacing — distance between wells
Completion design — lateral length, fracture stimulation design (stages, fluid type and volume, and proppant)

Time-frame

© N O U B W DN RE

Operating conditions — flowing wells producing at similar separator conditions

SPE-175527-MS Validating Analog Production Type Curves for Resource Plays (McLane & Gouveia)
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Analogue Selection Dilemma

Statistical Power
(sample size)

Representativeness
(analogue-ness)

Sometimes we have to sacrifice representativeness for sample size
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1)
2)
3)

4)

5)

6)

Analogue Selection Process

Build an understanding before limiting selection

Start with the largest reasonable dataset that your subsurface data will allow (the biggest constraint)
Dimensionally normalize production to length (e.g. Volume/100 m)
Test subsurface features & well design features for “impact” = statistical multivariate analysis

Only use “impactful” features from Step 3 to limit your Subsurface Feature analogue selection
(many papers refer to this as a “geodomain”)

Only use “impactful” features from Step 3 to limit your Well Design Feature analogue selection.

Reduce uncertainty by choosing geodomains & well designs that exhibit more consistent results
(i.e. lower P10:P90 ratios)
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Statistical Multivariate Analysis Approach
Parallel Coordinates Distribution (PCD)

Production Performance

/ Quartile Grouping \
Feature Data

Production Performance Quartiles

Well Design Feature Binned by Production Performance Quartiles

Production Divided into Performance Quartiles
G 0 GNE@ @ P

200

400

Percentile
Percentile

60.0

80.0

10 1400 1600

10 =3 .
48000 64000 00 600

16000 .
Well Design Feature

e remeeiemn -1 Hult @and Canadian Digcovery WCFD - Dec 16, 2016, 8:00 AM VERDAZO™

Production Performance Measure

e ey e . .- 0d Canadian Discovery WCFD - Dec 16, 2016, 5:55 AM WVERDAZO™ \ -
@ >=0to <25 (320) () »=251t0 <50 (319) @ >=50t0 <75 (320) @ =750 <100 (320) @ >=0to <25 (320) © »=25t0 <50 (319) © >=50to <75 (320) @ == 7510 < 100 (320)

SPE-185077-MS « Multivariate Analysis Using Advanced Probabilistic Techniques for Completion Optimization < B. Groulx
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Parallel Coordinates Distribution (PCD) Chart . Clear Performance Pattern

Clear Performance Pattern
00 — et ——vv ——aa

200
Y

o 400 .
g Shows a clear progression from
5 Bottom Quartile to Top Quartile

60.0

80.0 ;

... Convergence often indicates a threshold effect
1000
60.0 700 80.0 900 1000 1100 1200 1300 140.0
Well Design Feature o
@ >=0to <25 (320) © >=25t0 <50 (319) @ >=50to < 75 (320) @ >=75t0 <100 (320)

SPE-185077-MS - Multivariate Analysis Using Advanced Probabilistic Techniques for Completion Optimization
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Use Parallel Coordinates Distributions on Subsurface Features Too

Thickness Binned By Production Performance Quartiles

ﬁ:’oz g&a S

751 Entities - Group By: Percentile - Gas (mcfiwell) / 1000 ft {lateral length) - SPE-CETC-Isopach

Note the clear transition in production performance
from worst wells (black = bottom quartile) to best
wells (red = top quartile) as Thickness increases.

40.00

Percentile

60.00

@ ¢
80.00 r

™ 4
' @“ @
® } § @
100.00 i o0
60.00 90.00 120.00 150.00 180.00
SPE-CETC-Isopach
Data provided by Enverus Drillinginfo - Mar 14, 2023, 7:29 FM VERDAZO™
@ >==75t0 <100 (188) @ ==50t0 <75 (187) () »=25t0< 50 (188) @ ==0tc <25 (188)
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Example: Setting up Geodomain Analogue Datasets

NAMES ASSIGNED TO GEODOMAINS

* Geodomain attributes are used to identify wells in each
domain, named for easy selection, comparison and
analysis.

Depth (as a proxy for pressure) and Thickness were
identified as the most impactful subsurface features.

* Impactful Well Design features were used to further limit
the Geodomain Analogue datasets

e WELL COUNTS and P10:P90 Values for each Well Design
4/1 constrained Geodomain are shown below.

Depth
<6000 6000-7000 7000-8000 =>8000
<100 1a 1b 1c 1d
Thickness 100-125| 2a 2b 2c 2d
125-150| 3a 3b 3c 3d
>150 da 4b 4c 4d
WELL COUNTS
Depth
<6000 6000-7000 7000-8000 >8000
<100 55 7 6 3
Thickness 100-125 96 105 61 134
125-150 16 395 374 234
>150 7 21 126 11

P10:P90 Values
Depth
<6000 6000-7000 7000-8000 =8000
<100 3.1
Thickness 100-125 2.1 2.51 2.83 2.97
125-150 3.99 4.01 3.68
>150 2.55 4.44 5.14
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Minimize the Addition of Uncertainty

Step #4

36



What would you rather be?

Vaguely Correct ? Precisely Wrong

* Increasing industry trend to sacrifice accuracy for speed.

* More options, more scenarios = faster assessments & more focused decisions

* Shorter value-focused approach better reflects near-term price sensitivities
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Less Uncertainty in Shorter Forecasts

Volume (mcf/well)

5,000,000.0

4,000,000.0

3,000,000.0

2,000,000.0

1,000,000.0

0.0

36 month cum vs peak rate

261 Wells
Linear
R2:0.6310
R:0.7943
0 4000 8,000 12,000 16,000

Peak Rate CD Gas (mcf/day/well)

Data provided by IHS Information Hub - Mar 01, 2023, 812 AM VERDAZO™

FC - MDNG CD Gas (mcf)

20,000,000

15,000,000

10,000,000

5,000,000

EUR vs peak rate

261 Wells

Linear
R2:0.2546
R:0.5046

@ =
- - @
@
@
4000 8,000 12,000 16,000

Peak Rate CD Gas (mcf/day/well)

Data provided by IHS Information Hub - Mar 01, 2023, 8:11 AM VERDAZO™

== Linear

@ Gas (mcfiwell)

== Linear
@ EUR Gas (mcfiwell) using Actual + MDNG to ARPS
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3-year discounted cashflow better reflects near term risk-exposure

1) 3yr DCF = discounted cashflow using a 3-year production forecast
* Fast & arguably good enough for screening options & estimating risk-exposure

* Less data is forecasted = more data in the type curve will be based on production history
* Introduces uncertainty & risk to a broader, & less technical, audience

2) EUR DCF = Full EUR type curve & run discounted economics using Monte Carlo simulation
* Modeling all input uncertainties is more resource intensive, complex & robust.

* More data is forecasted = widening effect on Trumpet Curve bands (discussed later)
Check out SPE-185053-MS Building Type Wells for Appraisal of Unconventional Resource Plays (Miller, Frechette & Kellett)

Suggested approach:
a) Run several options at different price scenarios using 3yr DCF to identify candidate options within your risk tolerance.
b) Then run EUR DCF on those candidate options for a fuller understanding of possible production & value outcomes.
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Assumptions of Linearity = More Uncertainty

Peak Normalized Modified Duong Decline Profile (first 36 months)
765 Entities - Group By: Peak Rate - Gas (mcf) - Actual + FC (MDNG to ARPS) Gas (mcfiday/well)/FPeak rate

1.00 | Note how the decline shape changes with peak rate.
s * Don’t assume linearity (i.e. scaling production type curves
£ with well design scalars)
@ 080 ’ . : . .
o * Avoid using scalars whenever possible... scalars introduce
& additional uncertainty
3
= 0.60 1 * If you must use them due to limited analogue well counts,
[ =] .
£ find data to support the scalar value used
a
3
S 0.40
o
[=]
(18
0.20
-1 3 6 9 12 15 18 21 24 27 30 33
Month
Data provided by Enverus Drillinginfo - Mar 07, 2023, 3:37 FM VERDAZO™
>=0to <5000 (191) — >= 5000 to < 10000 (304) — >=10000 to < 15000 (166) — >= 15000 (107)
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Assumptions of Linearity = More Uncertainty

Peak Normalized Modified Duong Decline Profile (first 36 months)
765 Entities - Group By: Peak Rate - Gas (mcf) - Actual + FC (MDNG to ARPS) Gas (mcfiday/well)/FPeak rate

1.00 | Note how the decline shape changes with peak rate.
s * Don’t assume linearity (i.e. scaling production type curves
£ with well design scalars)
@ 080 ’ . : . .
o * Avoid using scalars whenever possible... scalars introduce
& additional uncertainty
3
= 0.60 1 * If you must use them due to limited analogue well counts,
[ =] .
£ find data to support the scalar value used
a
3
S 0.40
o
[=]
(18
0.20
-1 3 6 9 12 15 18 21 24 27 30 33
Month
Data provided by Enverus Drillinginfo - Mar 07, 2023, 3:37 FM VERDAZO™
>=0to <5000 (191) — >= 5000 to < 10000 (304) — >=10000 to < 15000 (166) — >= 15000 (107)
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Test Downside Scenarios using Aggregation
to help protect against risk-exposure

Step #5

© Omnira Software. All Rights Reserved
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Central Limit Theorem

SUM of independent random variables yields a NORMAL DISTRIBUTION

a= Production Outcomes

PRODUCT of independent random variables yields a LOGNORMAL DISTRIBUTION
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Aggregation 101

1 - 1 Well
Al
. Al B s-well Average
7
4 - 25-Well Average
o A I
A 47 . . .
The principle of aggregation can be thought of as:
%003 " o
I 1) aconvergence towards the mean
2) of an accumulating average
. pg(/ \ P10 _
3) as well count increases
001 éé;
Eé
"é
P
- SPE-175527-MS Figure 9 - Aggregating EURs with a P10:P90 ratio of 4
E U R M MSCF Validating Analog Production Type Curves for Resource Plays (Mark McLane, and Jim Gouveia)
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Aggregation (Trumpet) Curves

o Aggregation Curves  Trumpet plots show the P10 and P90

probability bounds (i.e. the 80% probability

180 P10:P30 =5 bounds)

160

o P10:P90 =3 * Y-axis is the variability in outcomes expressed
K P10:P90 =2 as a percentage of the Mean of your dataset

120 for a given well count (X-axis)
S [ SR G T Y S SR AP S Y S A YA s S

* The 80% probability bands get wider as the
80

Percentage of the Mean Value (%)

f’ P10:P90 ratio of your dataset increases

60

/ * The 80% probability bands (of the

* accumulated mean) converge as well count
20 (X-axis) increases

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Well Count

VERDAZO™
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Percentile Location of the Mean vs P10:P90 Ratio

p4g! — | | | |
O\ Get into the habit of communicating the
P46 I AN probability location of the mean outcome.
P44 A
\ For a P10:P90 ratio of 5, the mean of the
P42 I \ distribution plots at approximately the P38.
P40 | ~
P38 ;
P36 |
P34 |
P32 |
P30 } ! } } } !
2 4 5 6 8 10
P10 : P90
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Example: Distribution of Peak Rate P10:P90 =5

Each well has a 62% chance of being less than the mean

Distribution of Peak Rate
454 Wells
[} //
@ ,’
e J
P01
P02
o0 P10:P90 =5
P10 Mean = 5,115 mcf/day
P20 P50= 4,294
@ P30
£ P40
@ P50
S P60
o p7o
P80 Mean at P38
P90 Each outcome has a 62% chance
P of being below the Mean
Pog8
P99 »
®
. 2l
100 1,000 10,000 100,000
Peak Rate
Mar 01, 2023, 8:04 AM VERDAZO™
== Probit Mean(5,115) P10/P90(5) @ Peak Rate CD Gas (mcf/day/well)
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regation Downside Mean Workflow

5

200 Aggregation Curves 1. I have a known reliable analogue Mean and

P10:P90 =5 P10:P90 ratio (based on a statistically

180 significant analogue sample set).
160
P10:P90 = 3 2. Downside (Program Arithmetic) Mean is the
. _ mean that you have a 90% chance of
K P10:P30 =2 achieving or exceeding given the number of

wells you're drilling.

—
S
o

Y
N
o

3. Find the count of wells to be drilled on the
X-axis for the P10:P90 ratio Trumpet Curves
of your sample set and determine the
Downside Mean Factor on the Y-axis.

0]
o

Percentage of the Mean Value (%)
o
o

N
o
s

Multiply your analogue Mean by the
Percentage on the Y-axis to get your

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Downside Mean_
Well Count

o

VERDAZO™
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Example: 15 well program with P10:P90 =5

Percentage of the Mean Value (%)

200

180

160

140

120

100

Aggregation Curve (P10:P90 = 5)

Sample size = 15 well program
P10:P90 Ratio =5
Downside Mean Factor = 79%

.
w
wn
~
©
.
=
-
e
—
w

17 19 21 23 25 27 29 31 33 35 37 39
Well Count

VERDAZO

Mean of my data set = Peak Rate of
5,115 mcf/day, with a P10:90 = 5. Each
independent outcome has a 62%
chance of being less than the mean.

I’m drilling 15 wells.

Locate the Downside Mean Factor =
79%

Calculate the Downside Mean

= 5,115 x 79% = 4,041 mcf/day (90%
chance of the accumulated mean of 15
wells being >= this value)

Test Downside Mean for risk-exposure
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Forecasting Introduces More Uncertainty

Widening Effect due to Model Bias results from:
. Higher correlation between individual results

. Uncertainty of decline parameters
(check out SPE-201556-MS Appropriately Characterizing Uncertainty in Estimated Ultimate Recovery for Unconventional Type Wells)

- BLUE:
o Results are mostly
P independent: low
B expected correlation
Ef O between individual
o :.’_ development well results
< W
P5
Number of
Entities
&
= ORANGE:
B Higher expected
20 correlation between
oa individual development
L i well results

Image courtesy of Tyler Schlosser
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Monitor & Update Data

data quality refinement

Step #6

© Omnira Software. All Rights Reserved

51



Data Quality Refinement

(collaboration & peer reviews)

- |-

Geologist Completion Engineer
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Data Quality Refinement

(collaboration & peer reviews)

Completions
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Sequential accumulation plots for performance tracking

1) Show the accumulating mean values of well production outcomes in
the context of the Trumpet plots

2) Most use an early production measure (how well does this correlate
to long term production?)

3) Reveals how a program is tracking as well-count increases sequentially
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Sequential Accumulation (good)
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Sequential Accumulation (not so good)
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Sequential Accumulation (better than expected)
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But wait! = This was early production focused

* These Sequential Accumulation plots allowed us to monitor how a program
was tracking to expectations & established uncertainty for an early
production performance measure.

* What are my best early production measures to use? (see next slide)

* How can | track forecasted production (and value) with limited early
production data? (see Peak-Normalized Type Curve slides...)
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Early Production Correlations to EUR

Analysis of Production Measure Correlations to EUR for 4 Plays

Montney (Gas) Cardium (Qil) Viking (Oil) Bakken (Qil)
Data Set 1 Data Set 2 Data Set 1 Data Set 2 Data Set 1 Data Set 2 Data Set 1 Data Set 2
Correlation % | weicou | Correlation % | weicount | Correlation % | weicoun | Correlation % | weicoun | Correlation % | weiicoun | Correlation % | weicoun | Correlation % | weiicoun | Correlation % | well count
7 I I b . k PD Rate (month 1) 10.6 585 18.9 227 33.8 1592 37.7 769 21.8 3098 19.5 518 30.1 1387 30.0 591
I e u SI n g Pe a PD Rate (month 1-2) 21.0 584 29.9 226 42.3 1592 49.9 769 28.6 3098 35.3 818 39.5 1387 38.9 991
. PD Rate (month 1-3) 31.2 583 36.7 225 48.1 1592 58.0 769 33.4 3098 45.2 518 46.4 1387 45.1 991
I n th e exa m p I e - Peak 60.0 585 50.6 227 5AE5 1592 67.0 769 40.1 3098 65.1 818 61.3 1387 65.5 591
1P30 32.6 585 39.3 227 44.4 1574 56.2 769 30.9 2999 52.3 818 44.8 1387 45.7 991
CO m i ng u p IP60 42.7 585 45.2 227 54.8 1573 68.6 769 38.5 2999 59.7 818 51.3 1387 51.4 591
IP90 49.2 585 49.9 27 60.8 1573 74.2 768 43.5 2999 64.0 818 56.5 1387 56.1 981
1P180 60.8 576 62.0 227 70.0 1561 80.7 769 53.4 2094 71.0 818 66.6 1387 66.8 991
IP365 72.4 575 74.9 227 79.9 1561 86.1 769 69.1 2992 79.0 818 77.5 1387 78.8 931
3 Month Cum 23.2 585 19.4 27 46.9 1592 60.2 769 36.4 3098 58.9 818 52.2 1387 L7)2a 591
% 6 Month Cum 49.3 s85 45.1 27 65.4 1592 76.6 769 65.4 3098 70.0 818 65.0 1387 64.6 991
.? 12 Month Cum 67.1 523 67.0 227 77.6 1524 84.8 769 67.8 2563 77.9 818 76.5 1357 77.1 991
18 Month Cum 75.4 473 76.1 227 82.9 1357 88.7 763 79.4 2002 82.4 818 82.3 1243 84.0 991
b 24 Month Cum 79.7 317 81.6 227 86.7 1233 91.1 769 84.2 1551 85.3 818 88.6 1184 88.3 991
3 30 Month Cum 83.5 287 85.1 227 90.3 966 92.8 769 87.4 1125 87.5 B18 91.1 1067 90.9 991
36 Month Cum 87.5 227 87.5 27 94.1 769 94.1 768 89.7 818 89.7 818 92.6 991 92.6 991
= 3 Month Cum 16.4 585 8.9 227 43.8 1592 57.1 769 35.5 3098 56.1 818 51.6 1387 52.0 931
§ 6 Month Cum 40.3 585 30.5 27 63.8 1582 74.0 769 49.1 3098 64.6 518 63.8 1387 63.5 991
12 Month Cum 59.5 523 56.2 27 i 1524 84.5 769 67.3 2563 76.9 818 76.2 1357 76.7 931
K 18 Month Cum 71.5 473 RS 227 82.9 1357 88.6 769 79.3 2002 82.3 818 82.1 1249 83.7 981
24 Month Cum 77.5 377 78.4 227 86.7 1233 91.0 769 84.2 1551 85.3 818 88.4 1184 88.0 991
é 30 Month Cum 82.0 287 83.5 227 90.2 966 92.7 768 87.5 1125 87.6 818 90.9 1067 90.7 991
= 36 Month Cum 86.4 227 86.4 227 94.1 769 94.1 769 89.8 818 89.8 818 92.4 991 92.4 991
Legend
86.4 Green = Correlation between 70% and 100% Data Set 1 = wells with >80% correlation on Modified Duong fits for both "a" and "m" and >6 months production after peak
59,5 Yellow = Correlation between 50% and 70% Data Set 2 = subset of Data Set 1 where all wells have >=36 months production
40.3 Red = Correlation between 30% and 50%
16.4 Grey = Correlation between 0% and 30% Note: Sample sets include only horizontal wells. www.visageinfo.com

EUR calculation based on 240 month forecast using Modified Duong auto-forecast up to boundary dominated flow BDF), then transitioning to Arps for remainder of forecast.
Gas wells (Montney) used 60 months to BDF and a b value of 0.5 for Arps
Qil wells (Cardium, Viking and Bakken) used 48 months to BDF and a b value of 0.5 for Arps
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Peak Normalized 36 Month Type Curve

Peak Mormalized Forecast

1.00

0.80

Peak Normalized Type Curve
154 Wells

1) Peak Normalized profiles convey decline shape.
2) Multiply each period’s value by the Peak Rate to

get a quick forecast

3) Plug into discounted cashflow calculation at

different prices to test for risk-exposure

-1 3 B 9 12 15 18 21
Period

Data provided by IHS Information Hub - Mar 08, 2023, 11:47 AM VERDAZO™

24

27 30 33

— Actual + FC (MDNG to ARPS) Gas (mcf/day/well)/Peak rate
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Less Uncertainty in Shorter Forecasts

Volume (mcf/well)
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36 month cum vs peak rate
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R2:0.6310
R:0.7943
0 4000 8,000 12,000 16,000

Peak Rate CD Gas (mcf/day/well)

Data provided by IHS Information Hub - Mar 01, 2023, 812 AM VERDAZO™

FC - MDNG CD Gas (mcf)

20,000,000

15,000,000

10,000,000
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EUR vs peak rate

261 Wells

Linear
R2:0.2546
R:0.5046

@ =
- - @
@
@
4000 8,000 12,000 16,000

Peak Rate CD Gas (mcf/day/well)

Data provided by IHS Information Hub - Mar 01, 2023, 8:11 AM VERDAZO™

== Linear

@ Gas (mcfiwell)

== Linear
@ EUR Gas (mcfiwell) using Actual + MDNG to ARPS
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Decision Transparency
Show your work

Step #7

© Omnira Software. All Rights Reserved
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Example: Decision Transparency in Risk Assessment

1) We have an analogue dataset with similar subsurface features

2) We have identified two well design options to assess

3) We have mean Peak values & P10:P90 ratios from each well design option’s analogue set

4) Determine downside factors for each option based on program well count

5) We have a Peak Normalized type curve for 36 months

6) Calculate volume forecast (scale type curve to Peak and Downside Peak values of each option)

7) Test 36-month cashflow against different prices to assess risk-exposure
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Agile Risk Assessment Using Downside Mean

12 well program

Completion Completion
Option 1 Option 2

Length 1,400 1,400
Proppant 85 115
Frac Spacing 50 50
Cost (S million) 3.0 3.7
Operating Cost (S/mcf) 1 1
Peak (mcf/day) 5,500 6,000
Analogue Sample Size 60 94
P10:P90 3 5
Downside Factor 0.84 0.75
Downside Peak 4,620 4,500

© Omnira Software. All Rights Reserved

35% more proppant
S700K capital increase (23%)

10% production increase

_ Note different P10:P90




Peak Normalized 36 Month Type Curve

Peak Mormalized Forecast

1.00

0.80

Peak Normalized Type Curve
154 Wells

1) Peak Normalized profiles convey decline shape.

2) Multiply each period’s value by the Peak Rate to
get a quick forecast

3) Plug into discounted cashflow calculation at

different prices to test for risk-exposure

-1 3 B 9 12 15 18 21
Period

Data provided by IHS Information Hub - Mar 08, 2023, 11:47 AM VERDAZO™

24

27 30 33

— Actual + FC (MDNG to ARPS) Gas (mcf/day/well)/Peak rate
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Agile Risk Assessment Using Downside Mean

Completion Completion
Option 1 Option 2

Gas Price (S) 3 yr NPV10 SMillion
2.00 using peak rate -1.14 -1.68 While Option 2 yields 10% more production, it is more
2.00 using downside peak rate -1.44 2.18 risk-exposed at prices below $4/mcf and has a lower
3.00 using peak rate 0.71 0.35 downside discounted cashflow even at $6/mcf.
3.00 using downside peak rate 0.12 -0.66
4.00 using peak rate 2.56 2.37
2.00 T T e — 163 0.85 Option 1: Capital = 12 * S3 million = $36 million
5.00 using peak rate 4.42 4.39 Option 2: Capital = 12 * $3.7 million = $44.4 million
5.00 using downside peak rate 3.23 2.37
6.00 using peak rate 6.27 6.42
6.00 using downside peak rate 4.79 3.89

© Omnira Software. All Rights Reserved




Would your decision be different using a 20 year forecast?

Completion Completion Completion Completion
Option 1 Option 2 Option1  Option 2
Gas Price (S) 3 yr NPV10 SMillion 20 yr NPV10 SMillion
2.00 using peak rate -1.14 -1.68 -0.17 -0.62
2.00 using downside peak rate -1.44 -2.18 -0.63 -1.39
3.00 using peak rate 0.71 0.35 2.65 2.47
3.00 using downside peak rate 0.12 -0.66 1.75 0.93
4.00 using peak rate 2.56 2.37 5.48 5.55
4.00 using downside peak rate 1.68 0.85 4.13 3.24
5.00 using peak rate 4.42 4.39 8.31 8.63
5.00 using downside peak rate 3.23 2.37 6.5 5.55
6.00 using peak rate 6.27 6.42 11.13 11.72
6.00 using downside peak rate 4.79 3.89 8.87 7.86
While 3 yr NPV10 Option 2 yields 10% more production, it is more risk-
exposed at prices below $4/mcf and has a lower downside discounted
bcf cashflow even at S6/mcf.
EUR using peak 4.1 4.5 Option 1: Capital = 12 * $3 million = $36 million
EUR using downside peak rate 3.4 3.4
Option 2: Capital = 12 * $3.7 million = $44.4 million
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Summary

What did we accomplish today?

1) Pragmatic way to measure uncertainty

2) Optimized analogue selection that is focused on impactful-features to reduce uncertainty

3) How to measure downside potential of production outcomes using Aggregation Curves

4) Benefits of using near-term, higher-confidence, production forecasts for value-driven decisions

5) An example of an Agile Risk Assessment process in action
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Conclusions

1) Including uncertainty & risk in decision making doesn’t have to be a lot of extra work

2) Fast, less accurate, approaches can be an easy way to test scenarios for risk exposure

3) This supports devoting a stronger focus on options that warrant more robust assessments
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Including Uncertainty & Risk Analysis in Decision Making

1) Don’t overwork the problem > keep it as simple as you can

2) Itdoesn’t replace good engineers & geoscientists

3) It doesn’t eliminate risk > it helps you understand and manage it

4) It doesn’t replace good judgment > check assumptions & results for reasonability
5) Asset Teams must understand it > this requires staff “buy-in” and training

6) Success depends on management commitment
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7 Steps to Minimize Uncertainty & Risk

=l e Y e

Understanding Uncertainty

Improving the quality and quantity of data
Representativeness

Minimize the Addition of Uncertainty

Test Downside Scenarios using Aggregation
Monitor & Update Data

Decision Transparency

Thank You!
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Appendix: additional slides for reference




Additional cautions & considerations

e Caution: assumptions of linearity in scalars

e Caution: inadequate consideration of operational (downtime) reality

* Consider: using broader analogue selection brackets to increase sample size (improves
statistical power)
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