

Workflows to Minimize Uncertainty (and Risk) in Type Curve Development

Bertrand Groulx, Omnira Software

Importance of Type Curves

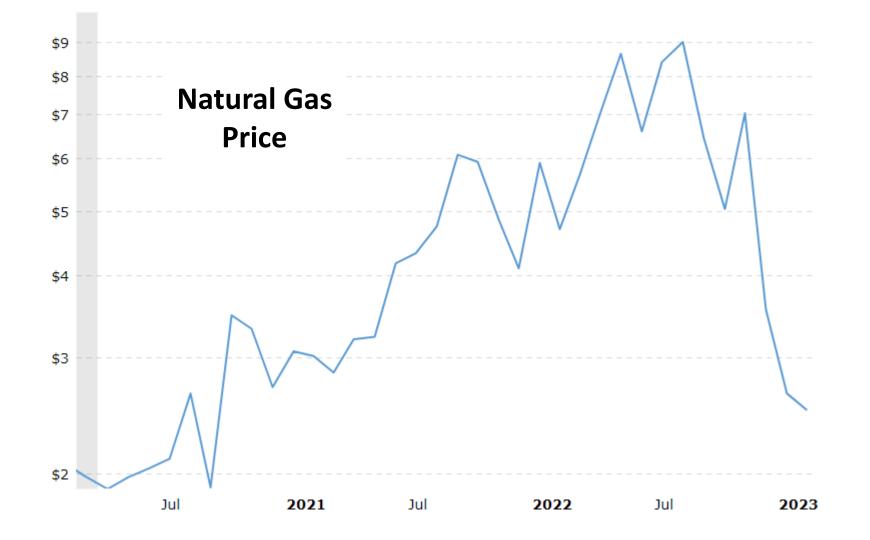
"Building type wells is arguably the most important exercise in decision making for unconventional resource plays. The type well and its associated uncertainty are often the largest drivers behind whether a project will be economic, or not. However, appropriately characterizing type well uncertainty is not trivial, and is often overlooked."

SPE-201556-MS Miller, Dauncey and Gouveia

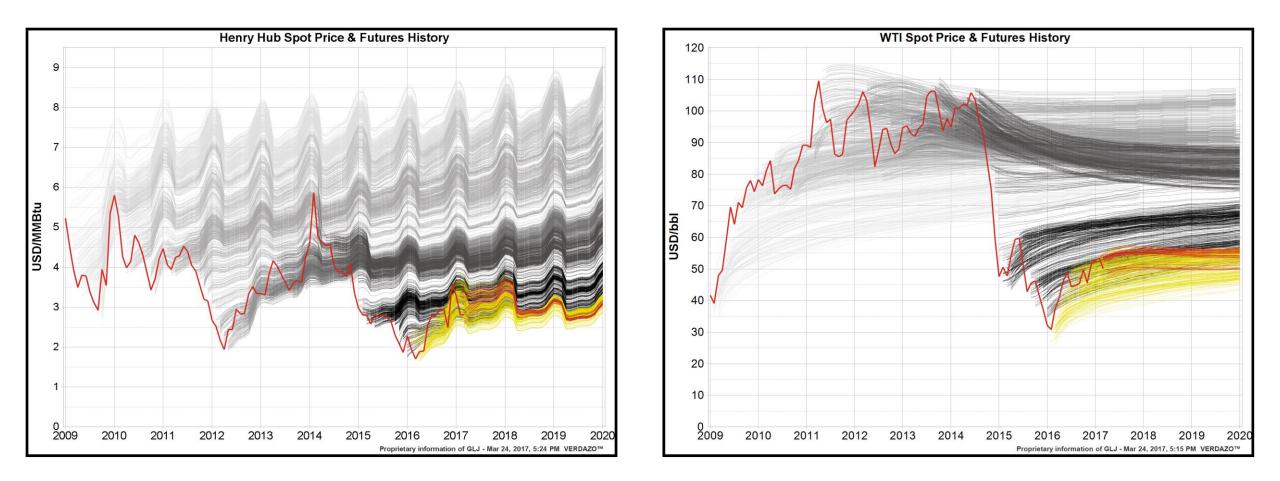
Why should I care about uncertainty & risk?

- Market capital loss investors do not react well to production guidance shortfalls
- Cashflow shortcomings
- Possible reserve write-downs •

Impacts on stocks of companies that fell short of their production guidance



Reduced by 70% in 8 months


Reduced by 26% in 1 month

Reduced by 40% in 8 months

Commodity Price uncertainty can punish even the best plans

... and we're terrible at predicting Commodity Prices

7 Steps to Minimize Uncertainty & Risk

7 Steps to Minimize Uncertainty & Risk

- 1. Understanding Uncertainty
- 2. Improving the quality and quantity of data
- 3. Representativeness
- 4. Minimize the Addition of Uncertainty
- 5. Test Downside Scenarios using Aggregation
- 6. Monitor & Update Data
- 7. Decision Transparency

7 steps to minimize uncertainty & risk

Understanding Uncertainty

to inform value-based decision making

© Omnira Software. All Rights Reserved

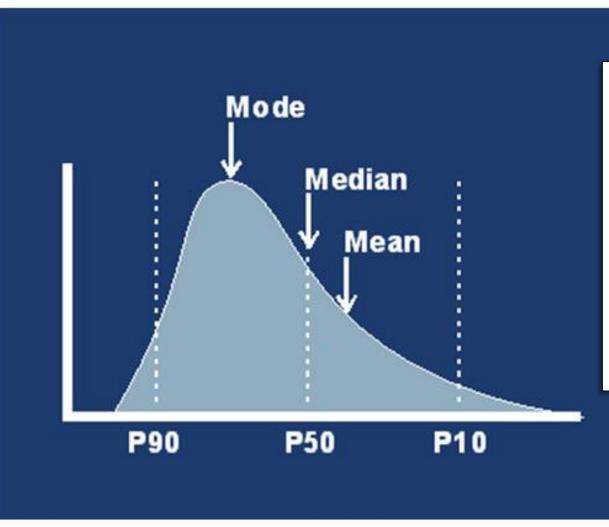
My definitions (for the purpose of this presentation)

Uncertainty = Range of possible outcomes

• Provides the context to assess Risk

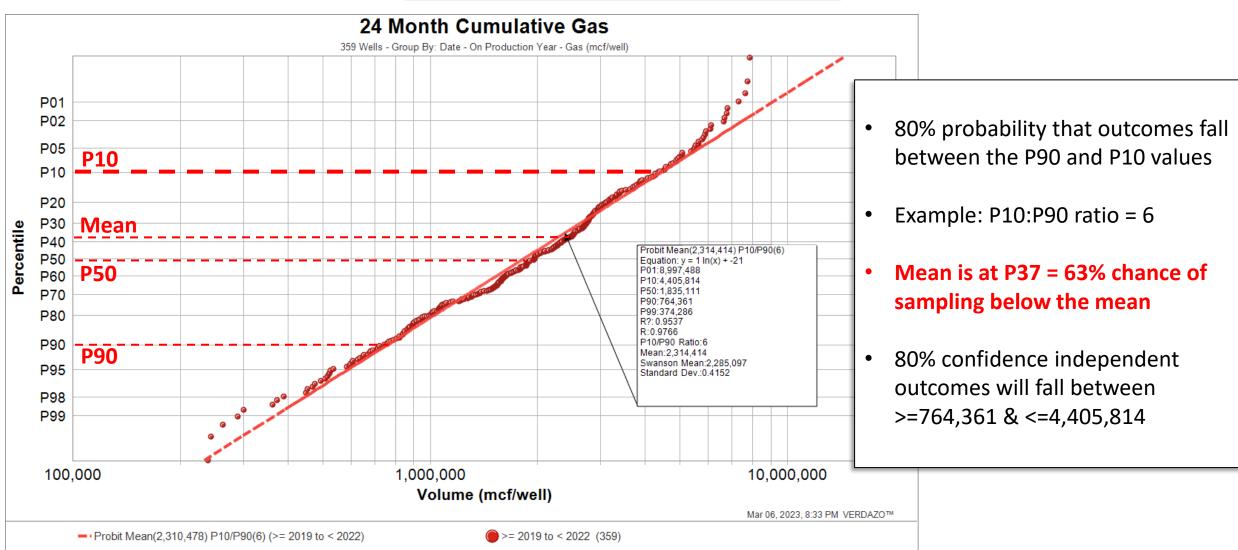
Risk = Threat of loss (\$)

• Inherently value-focused

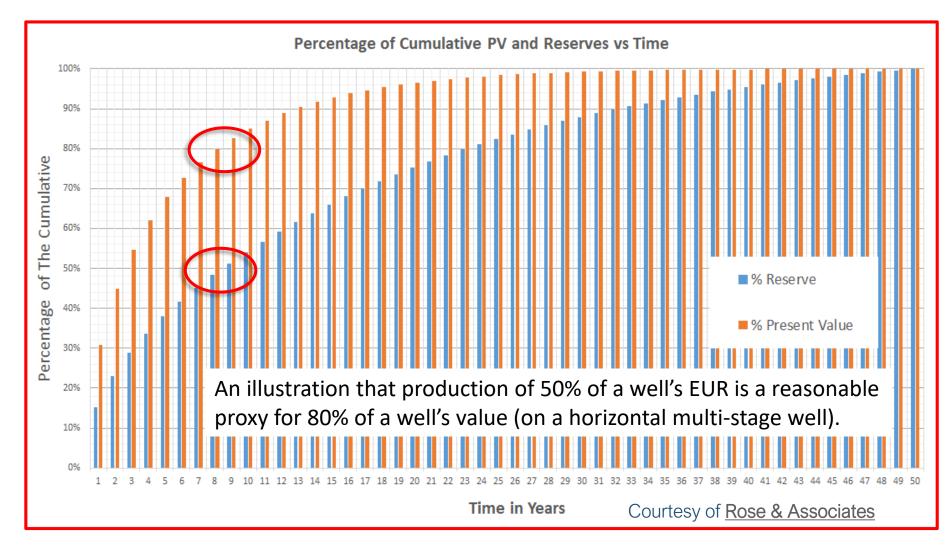

These should, ideally, always be considered together.

Outcomes = production or value outcomes

Features = input data


- 10-year-old \rightarrow iioohhnoo = I don't know?
- 12-year-old \rightarrow The question is absurd
- Wife \rightarrow With an uncertainty ruler!
 - While we can't measure uncertainty, we can use a proxy for it = P10:P90 ratio
 - Communicates the range of outcomes with an 80% confidence interval (i.e. 80% of outcomes fall between the P10 and P90 values)

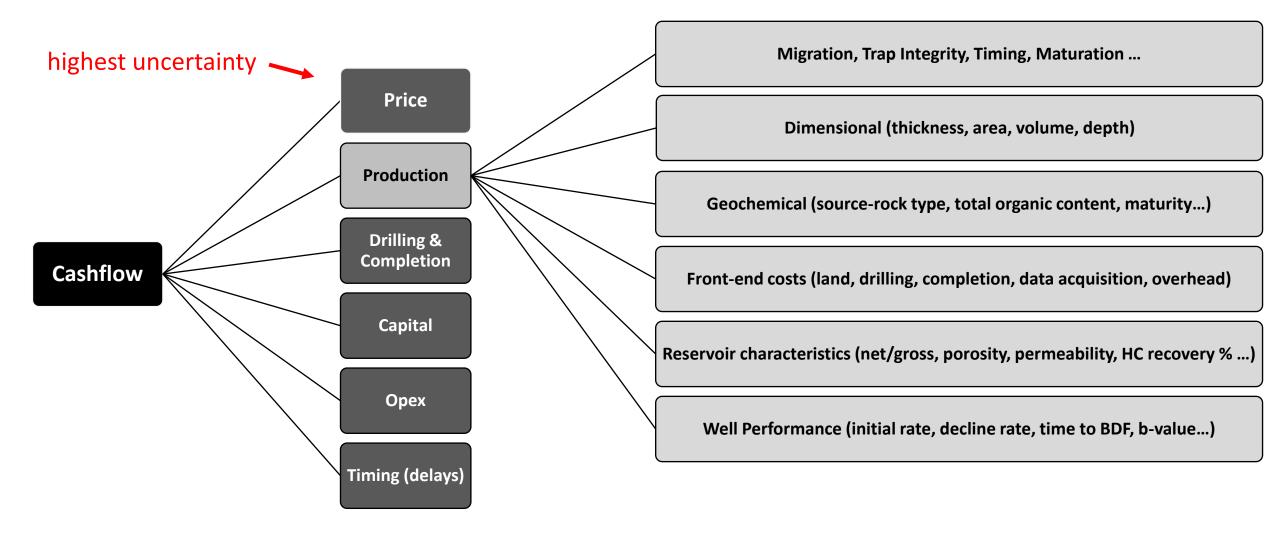
P10:P90 ratio proxy for uncertainty (80% confidence)



- P10:P90 ratio is an expression of the range of possible outcomes
- This is a proxy used to "measure" (estimate) uncertainty
- The higher the P10:P90 ratio, the further the Mean is from the Median (P50) = a lower likelihood of achieving the Mean or more

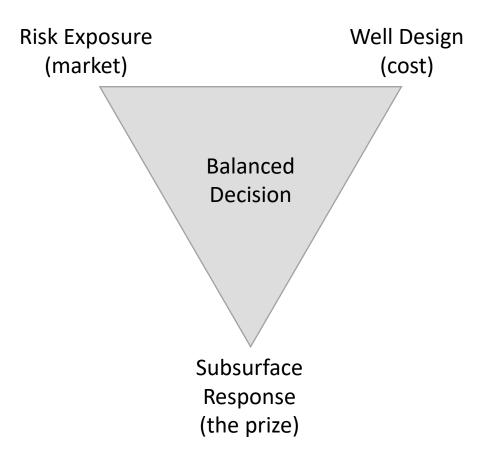
Example Probit Plot

Value focus = 50% EUR as a Proxy for 80% Value



50% EUR Comparison Across Plays

Uncertainties that Affect Value


Optimistic estimates become exposed when prices fall

Cognitive Biases Can Contribute Uncertainty

Confirmation Social Proof Anchoring Survivorship Availability Conservatism Clustering Recency Salience Overconfidence Ostrich Bandwagon HiPPO = Highest Paid Person's Opinion

Primary Risk & Uncertainty Elements That Drive Decisions

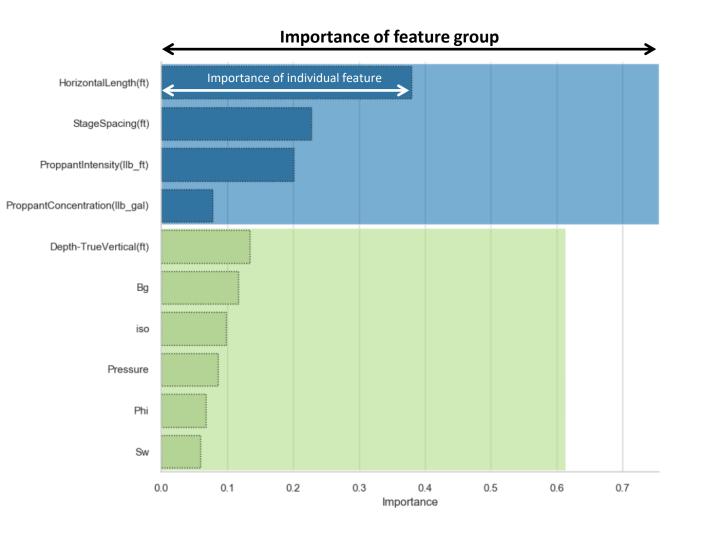
- Available funds
- Size of the prize
- Threat & magnitude of loss

7 steps to minimize uncertainty & risk

Improving the quality and quantity of data

© Omnira Software. All Rights Reserved

Ask Chat GPT


How can I reduce uncertainty in production forecasts?

Reducing uncertainty in production forecasts is an important goal for petroleum companies, as it can help to improve planning and decision-making. Here are some strategies that can help to reduce uncertainty in production forecasts:

- Improve data quality: Accurate production forecasting relies on high-quality data. This includes data on reservoir characteristics, production history, and well performance. By improving the quality and quantity of data, you can reduce uncertainty in your production forecasts.
- 2. Use multiple methods: There are different methods that can be used to forecast production, including analytical models, numerical simulations, and machine learning algorithms. By using multiple methods and comparing the results, you can get a better understanding of the uncertainty in your forecasts and identify areas where further data or analysis is needed.
- 3. Incorporate uncertainty analysis: Uncertainty analysis can help you to quantify the level of uncertainty in your production forecasts. This can be done by using techniques such as Monte Carlo simulation, which involves running multiple simulations with different input parameters to generate a range of possible outcomes. By incorporating uncertainty analysis into your forecasting process, you can better understand the range of possible outcomes and develop more realistic production forecasts.
- 4. Monitor and update forecasts: Production forecasts are not static and can change over time as new data becomes available or conditions change. By monitoring production closely and updating your forecasts regularly, you can reduce uncertainty and improve the accuracy of your predictions.
- 5. Engage experts: Engaging experts in the field, such as geologists, reservoir engineers, and production analysts, can help to identify key factors that may impact production forecasts and provide insights into how to reduce uncertainty. Collaboration with experts in the field is an important step towards a more accurate production forecast.

Subsurface Data is as important as Completion Data

...and harder to come by

Completion = Controllable

Subsurface = Non-controllable

(but selectable ... you can choose where you drill your well)

Using ML in multiple plays we consistently see that completions & geoscience data contribute (near) equally to production predictions.

Subsurface Data = #1 opportunity for more, & better, data

- Biggest data opportunity to reduce uncertainty & improve predictability
- Data is rarely centralized and maintained as a single "source of truth"
- Inconsistent cut-offs and nomenclature across multiple geologists working on a single play
- Rarely is there a formalized process to "Look Back" at results and test/recalibrate/update subsurface data in a centralized location

Feature Interdependence (Correlation) – A Challenge

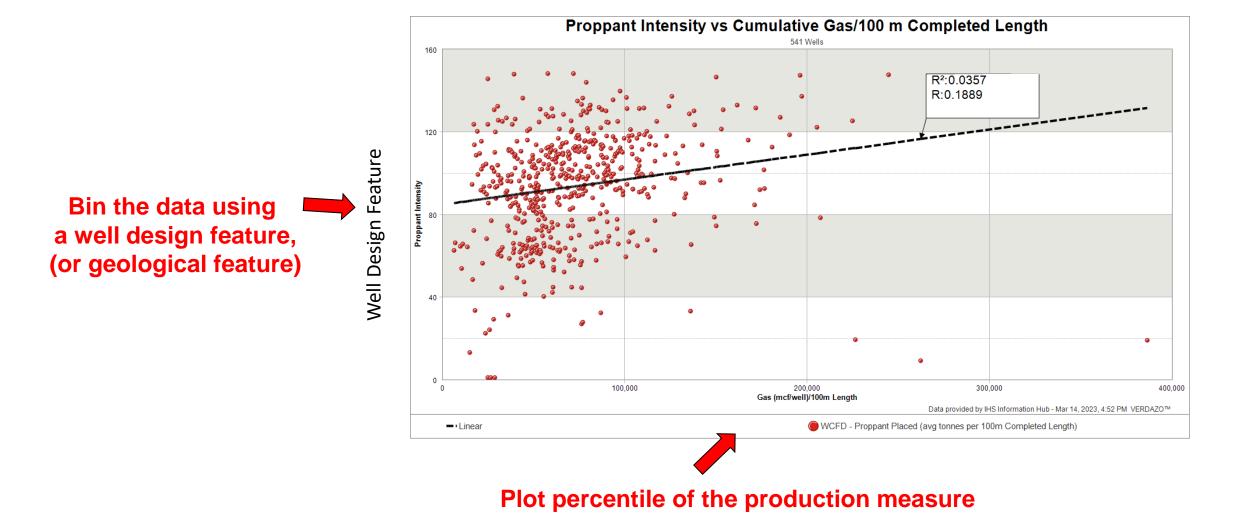
0.6

- 0.2

	Spearman Correlation																
- 100000		-0.23	-0.10	-0.01	0.34	0.20	0.24	0.12	0.14	0.22	0.35	0.10	0.19	0.07	-0.08	0.02	0.07
- 1001000	-0.23	1.00	-0.21	-0.01	-0.15	-0.68	-0.10	-0.05	-0.15	-0.16	-0.53	-0.21	-0.11	-0.04	0.33	-0.15	0.04
10.000 million	-0.10	-0.21	1.00	-0.11	-0.14	-0.43	-0.17	-0.05	-0.16	-0.29	0.04	0.23	-0.21	-0.12	-0.26	0.17	-0.16
distinguit -	-0.01	-0.01	-0.11	1.00	-0.00	0.06	0.10	-0.05	-0.01	0.10	0.03	-0.03	-0.17	0.02	-0.01	0.00	0.05
linging!	0.34	-0.15	-0.14	-0.00	1.00	0.24	0.43	0.52	0.31	0.42	0.57	0.06	0.32	0.13	-0.06	-0.12	0.25
inclusi -	0.20	-0.68	-0.43	0.06	0.24	1.00	0.11	0.15	0.28	0.33	0.41	0.04	0.26	0.17	-0.04	-0.03	0.03
Ingritaria -	0.24	-0.10	-0.17	0.10	0.43	0.11	1.00	-0.40	-0.02	0.16	0.38	0.06	-0.06	-0.39	-0.16	0.26	0.03
Name and A	0.12	-0.05	-0.05	-0.05	0.52	0.15	-0.40	1.00	0.28	0.29	0.21	0.03	0.43	0.72	0.08	-0.26	0.20
forms/test	0.14	-0.15	-0.16	-0.01	0.31	0.28	-0.02	0.28	1.00	0.72	0.41	-0.40		0.29	0.50	-0.22	0.22
nioning -	0.22	-0.16	-0.29	0.10	0.42	0.33	0.16	0.29	0.72	1.00	0.60	-0.51		0.29	0.45	-0.02	0.40
hanning -	0.35	-0.53	0.04	0.03	0.57	0.41	0.38	0.21	0.41	0.60	1.00	0.10	0.28	0.05	-0.19	0.13	0.21
-	0.10	-0.21	0.23	-0.03	0.06	0.04	0.06	0.03	-0.40		0.10	1.00	-0.27	-0.11	-0.79	0.11	-0.21
- 1000 -	0.19	-0.11	-0.21	-0.17	0.32	0.26	-0.06	0.43	0.50	0.54	0.28	-0.27	1.00	0.31	0.34	-0.21	0.19
-	0.07	-0.04	-0.12	0.02	0.13	0.17	-0.39	0.72	0.29	0.29	0.05	-0.11	0.31	1.00	0.22	-0.25	0.11
- 1000	-0.08	0.33	-0.26	-0.01	-0.06	-0.04	-0.16	0.08	0.50	0.45	-0.19	-0.79	0.34	0.22	1.00	-0.23	0.13
-	0.02	-0.15	0.17	0.00	-0.12	-0.03	0.26	-0.26	-0.22	-0.02	0.13	0.11	-0.21	-0.25	-0.23	1.00	-0.08
-	0.07	0.04	-0.16	0.05	0.25	0.03	0.03	0.20	0.22	0.40	0.21	-0.21	0.19	0.11	0.13	-0.08	1.00
	1	1	1	1		4	1	T			1	1	T	1	1	T	
		8	2				1										
											2						

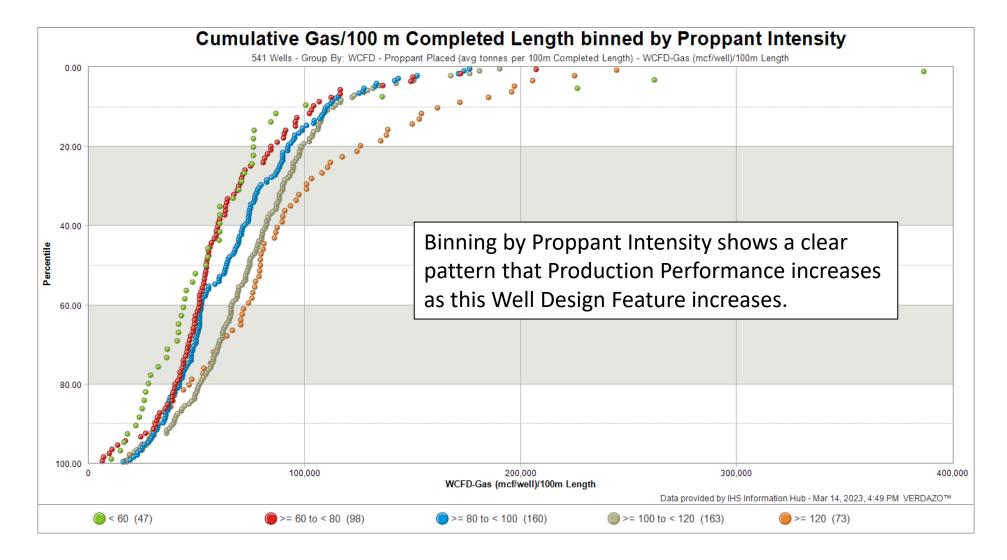
- 1) It's hard to understand and separate the effects of two or more features that are correlated
- 2) It's harder to intelligently select which features to include in a model

Reduce Redundancy With Feature Engineering


Highly Correlated = Redundancy

- Length
- Total Proppant
- Total Fluid

Feature Engineering (New Information)


- Length
- Proppant Intensity (lbs/foot)
- Proppant Concentration (lbs/gallon)

Don't rely on correlations as a measure of importance

Binned Cumulative Probability Plots Can Convey Clear Trends

Same data as previous slide

7 steps to minimize uncertainty & risk

Representativeness (Analogue Selection)

finding the balance between Sample Size & Relevance

Analogue Selection

- <u>Analogue wells should have a similarity</u> on which a comparison may be based and represent the range of possible outcomes (i.e. don't just select the best wells).
- Selecting wells with <u>similar characteristics may reduce the range of uncertainty</u> in your type-well curve.
- Common criteria for selecting similar wells include:
 - 1) Geology
 - 2) Reservoir
 - 3) Well Design
 - 4) Well Density
 - 5) Operational Design

Is "Representativeness" even possible?

For example, analogs should have the same or similar:

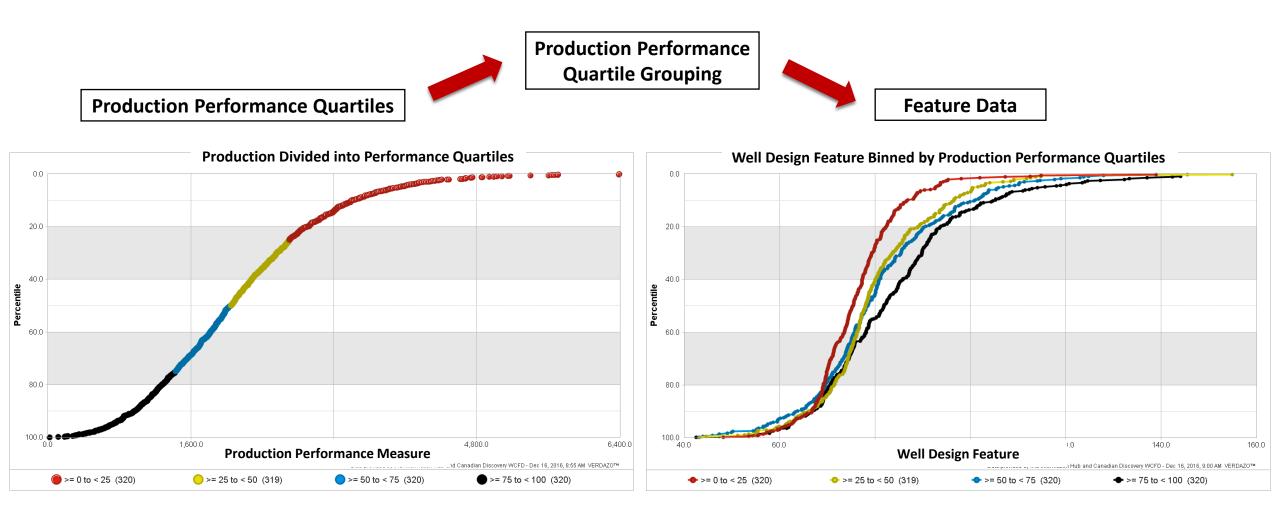
- 1. Geology lithology, principal mineralogy, clay content, total organic carbon (TOC), etc.
- 2. Depth, temperature and pressure
- 3. Fluid composition and properties
- 4. Reservoir drive mechanism
- 5. Spacing distance between wells

- 6. Completion design lateral length, fracture stimulation design (stages, fluid type and volume, and proppant)
- 7. Time-frame
- 8. Operating conditions flowing wells producing at similar separator conditions

SPE-175527-MS Validating Analog Production Type Curves for Resource Plays (McLane & Gouveia)

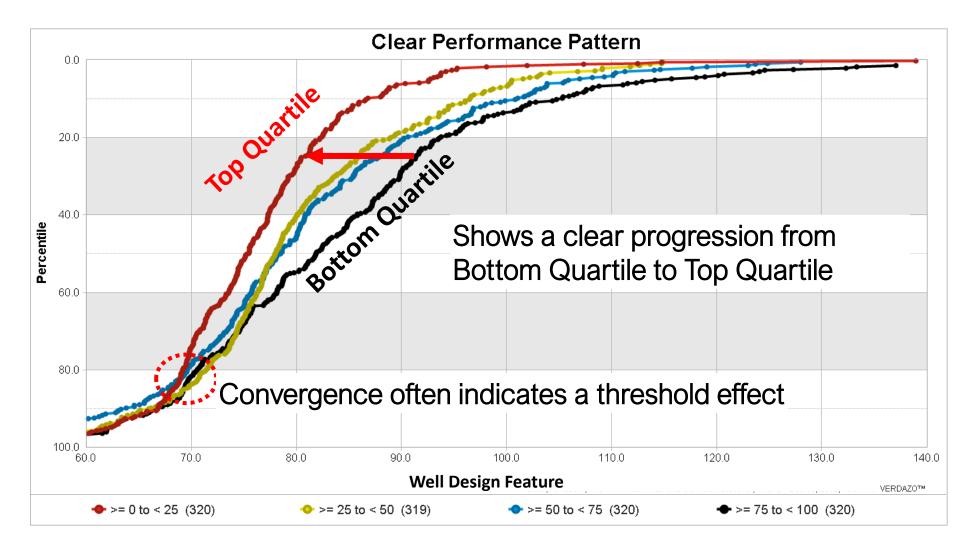
Analogue Selection Dilemma

Sometimes we have to sacrifice representativeness for sample size

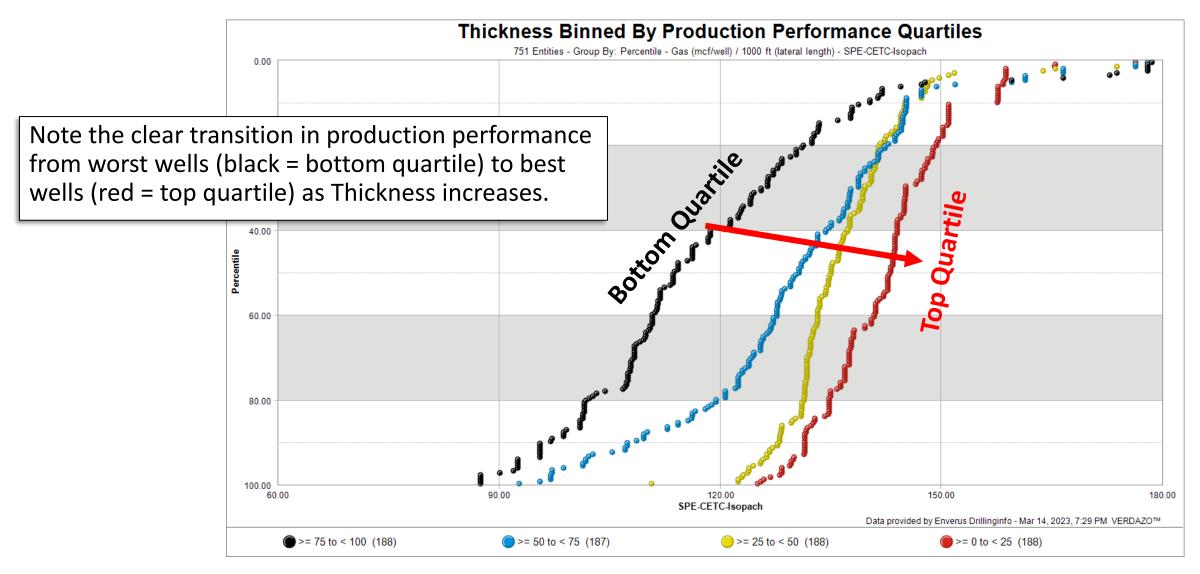

Analogue Selection Process

Build an understanding before limiting selection

- 1) Start with the largest reasonable dataset that your subsurface data will allow (the biggest constraint)
- 2) Dimensionally normalize production to length (e.g. Volume/100 m)
- 3) Test subsurface features & well design features for " \underline{impact} " \rightarrow statistical multivariate analysis
- 4) Only use "<u>impactful</u>" features from Step 3 to limit your <u>Subsurface Feature analogue selection</u> (many papers refer to this as a "geodomain")
- 5) Only use "*impactful*" features from Step 3 to limit your <u>Well Design Feature analogue selection</u>.
- 6) Reduce uncertainty by choosing geodomains & well designs that exhibit more consistent results (i.e. lower P10:P90 ratios)


Statistical Multivariate Analysis Approach

Parallel Coordinates Distribution (PCD)


SPE-185077-MS • Multivariate Analysis Using Advanced Probabilistic Techniques for Completion Optimization • B. Groulx

Parallel Coordinates Distribution (PCD) Chart : Clear Performance Pattern

SPE-185077-MS • Multivariate Analysis Using Advanced Probabilistic Techniques for Completion Optimization

Use Parallel Coordinates Distributions on Subsurface Features Too

Example: Setting up Geodomain Analogue Datasets

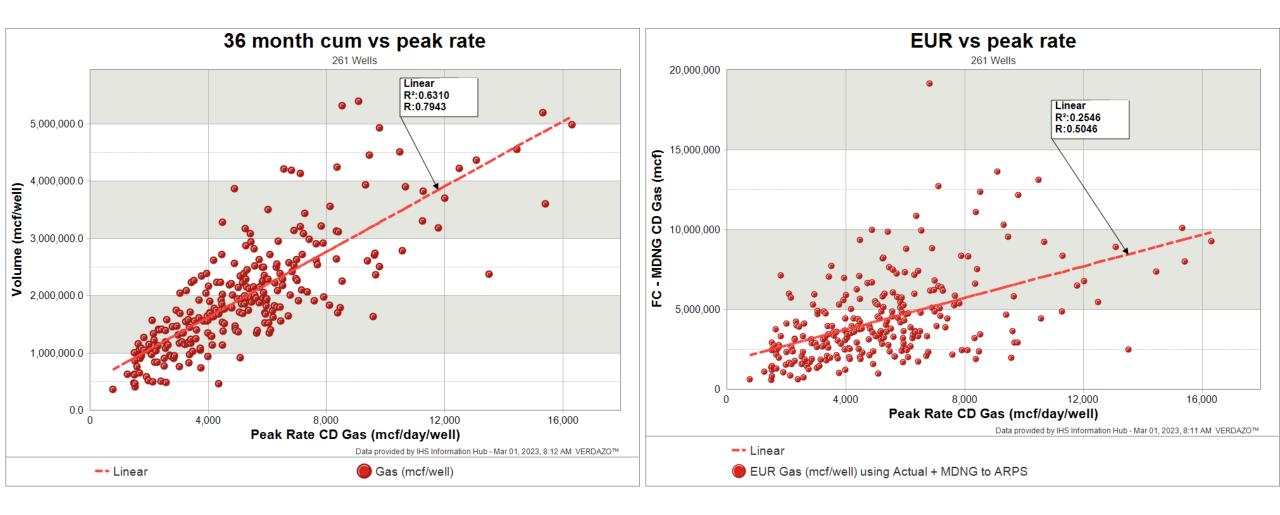
7 steps to minimize uncertainty & risk

Minimize the Addition of Uncertainty

© Omnira Software. All Rights Reserved

What would you rather be?

- Quickly
- Inexpensively



Precisely Wrong

- Slowly
- Expensively

- Increasing industry trend to sacrifice accuracy for speed.
- More options, more scenarios = faster assessments & more focused decisions
- Shorter value-focused approach better reflects near-term price sensitivities

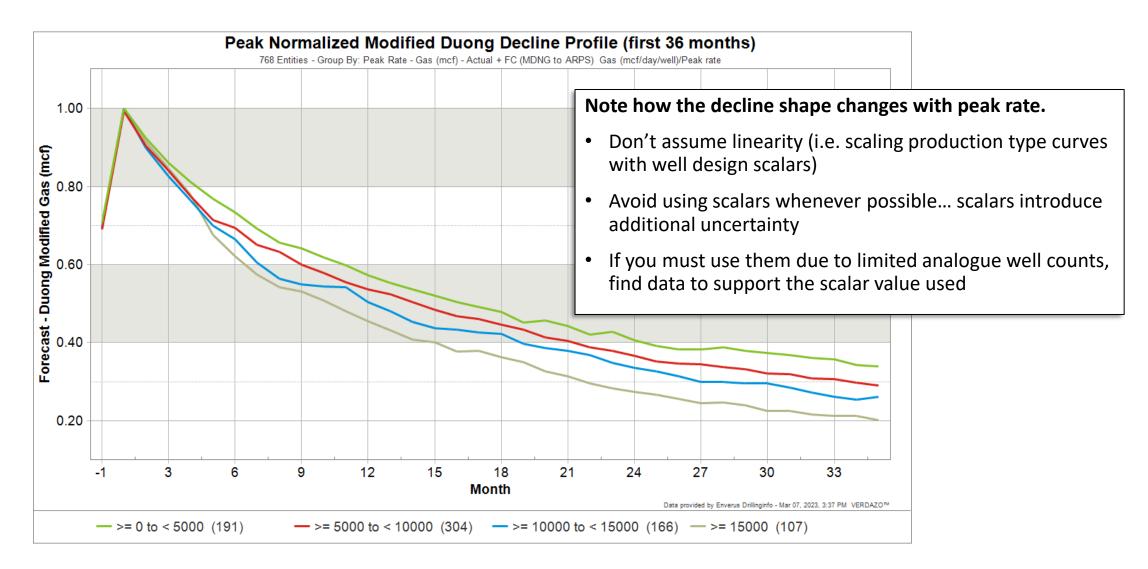
Less Uncertainty in Shorter Forecasts

3-year discounted cashflow better reflects near term risk-exposure

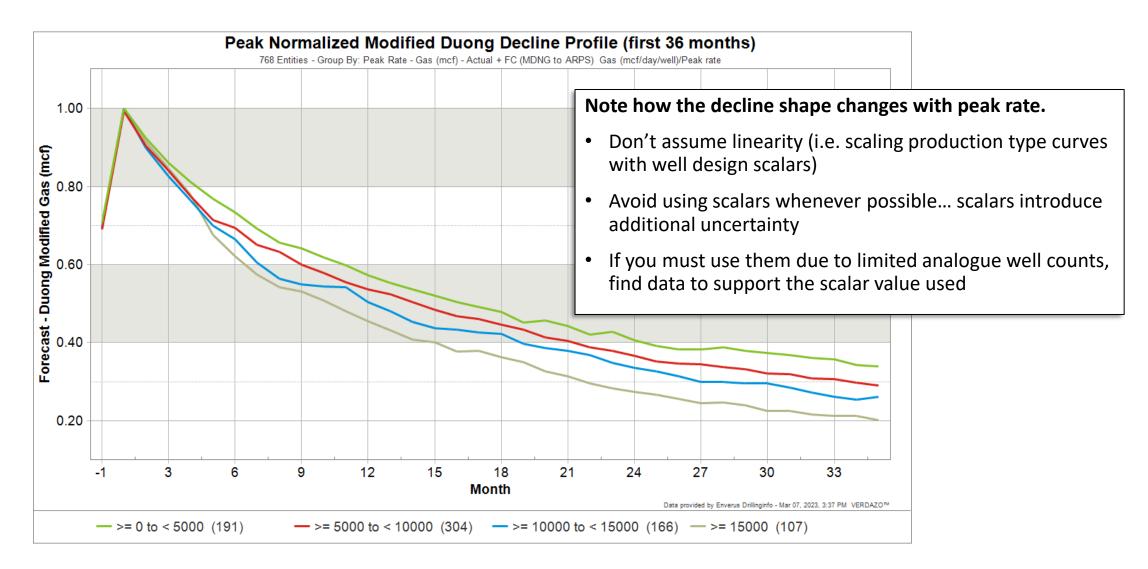
1) **3yr DCF = discounted cashflow using a 3-year production forecast**

- Fast & arguably good enough for screening options & estimating risk-exposure
- Less data is forecasted = more data in the type curve will be based on production history
- Introduces uncertainty & risk to a broader, & less technical, audience

2) EUR DCF = Full EUR type curve & run discounted economics using Monte Carlo simulation


- Modeling all input uncertainties is more <u>resource intensive</u>, <u>complex & robust</u>.
- More data is forecasted = widening effect on Trumpet Curve bands (discussed later)

Check out SPE-185053-MS Building Type Wells for Appraisal of Unconventional Resource Plays (Miller, Frechette & Kellett)


Suggested approach:

- a) Run several options at different price scenarios using 3yr DCF to identify candidate options within your risk tolerance.
- b) Then run EUR DCF on those candidate options for a fuller understanding of possible production & value outcomes.

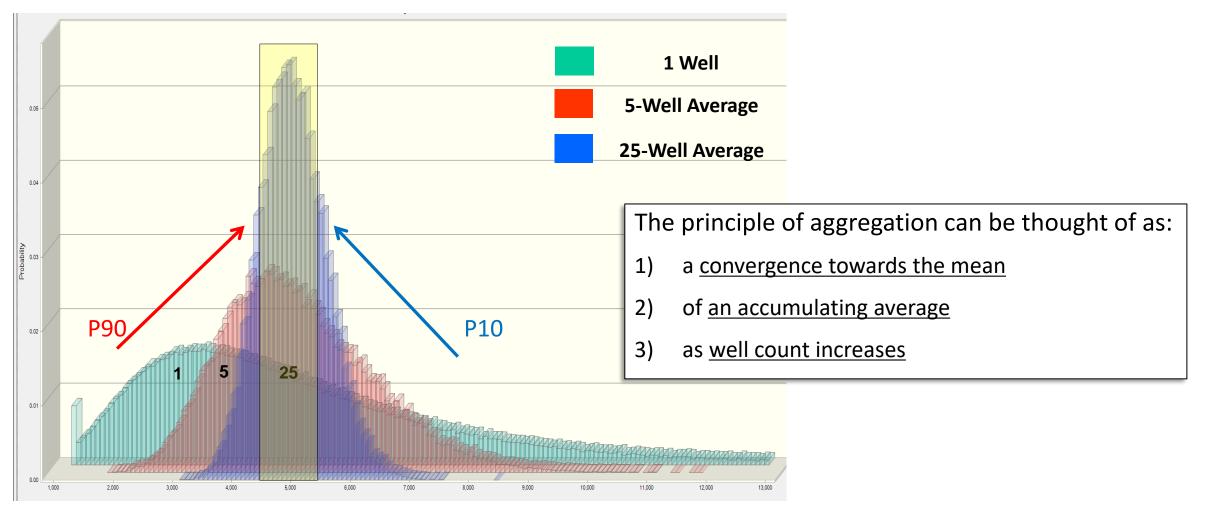
Assumptions of Linearity = More Uncertainty

Assumptions of Linearity = More Uncertainty

7 steps to minimize uncertainty & risk

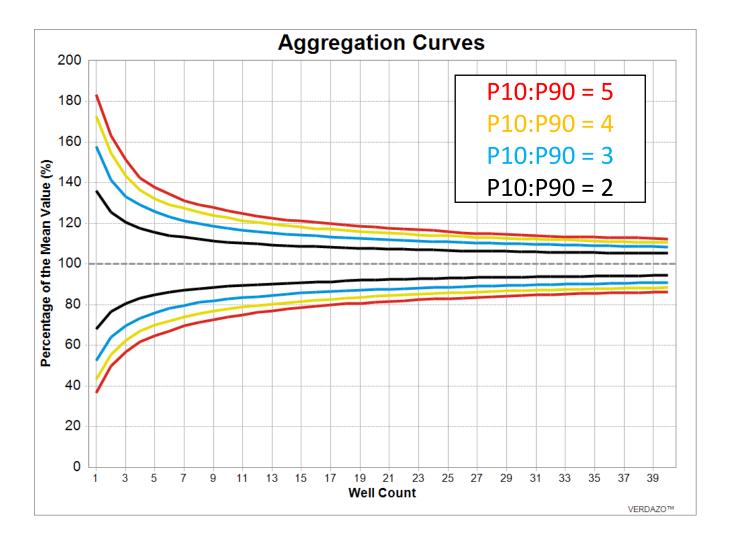
Test Downside Scenarios using Aggregation to help protect against risk-exposure

© Omnira Software. All Rights Reserved

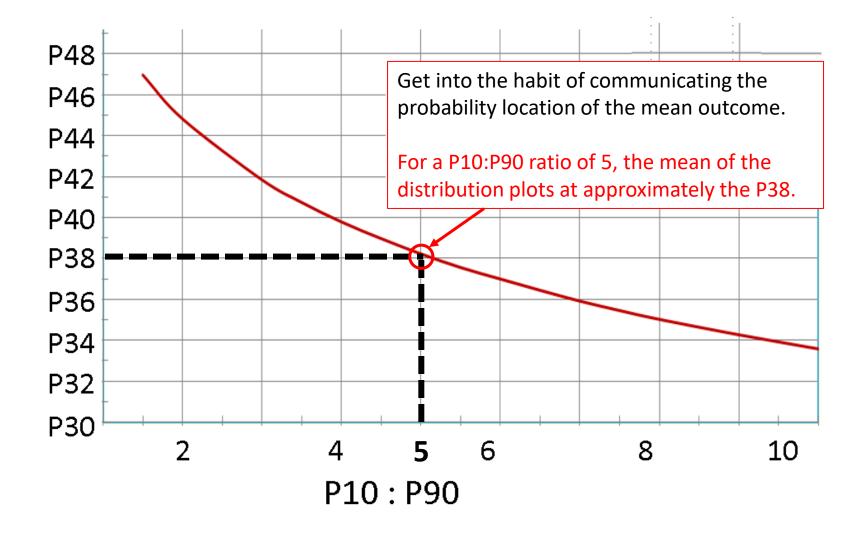

Central Limit Theorem

<u>SUM</u> of independent random variables yields a **<u>NORMAL DISTRIBUTION</u>**

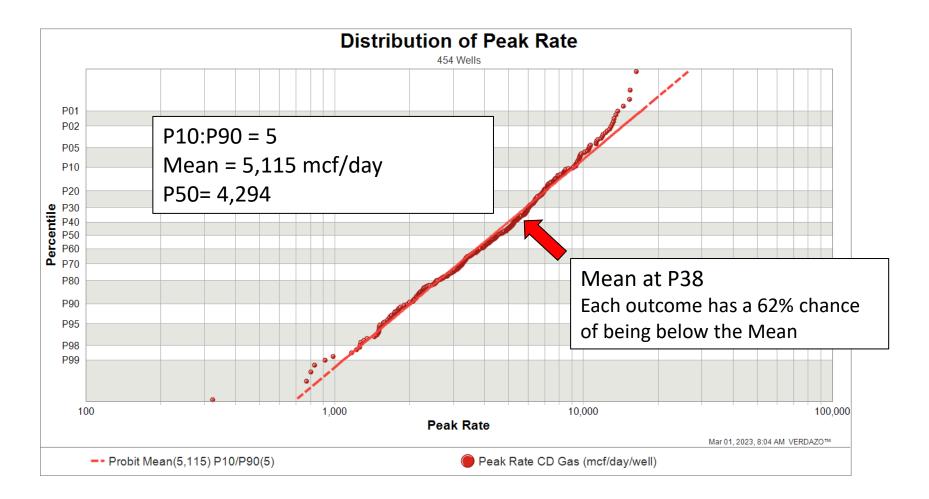
PRODUCT of independent random variables yields a **LOGNORMAL DISTRIBUTION**


Aggregation 101

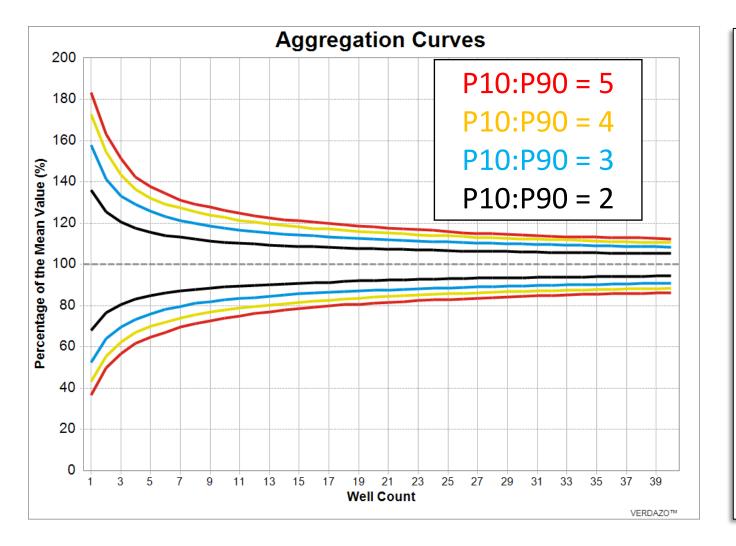
EUR – MMSCF


SPE-175527-MS Figure 9 - Aggregating EURs with a P10:P90 ratio of 4 Validating Analog Production Type Curves for Resource Plays (Mark McLane, and Jim Gouveia)

Aggregation (Trumpet) Curves

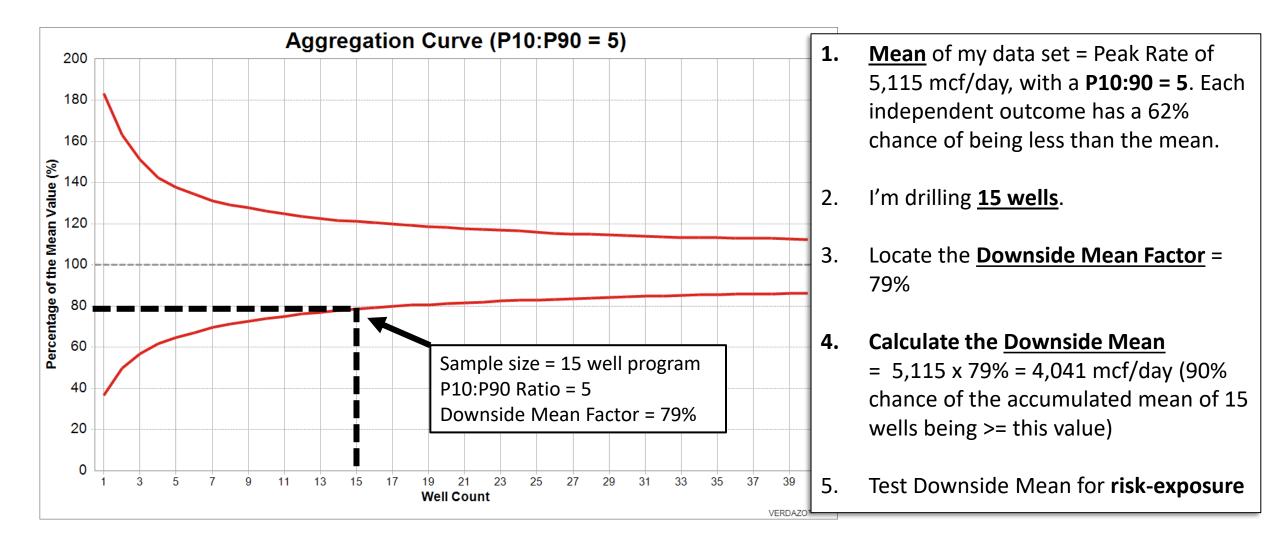

- Trumpet plots show the P10 and P90 probability bounds (i.e. the 80% probability bounds)
- Y-axis is the variability in outcomes expressed as a percentage of the Mean <u>of your dataset</u> for a given well count (X-axis)
- The 80% probability bands get wider as the P10:P90 ratio <u>of your dataset</u> increases
- The 80% probability bands (of the accumulated mean) converge as well count (X-axis) increases

Percentile Location of the Mean vs P10:P90 Ratio



Example: Distribution of Peak Rate P10:P90 = 5

Each well has a 62% chance of being less than the mean



Aggregation Downside Mean Workflow

- I have a known reliable analogue <u>Mean</u> and P10:P90 ratio (based on a statistically significant analogue sample set).
- Downside (Program Arithmetic) Mean is the mean that you have a 90% chance of achieving or exceeding given the <u>number of wells you're drilling</u>.
- Find the count of wells to be drilled on the X-axis for the P10:P90 ratio Trumpet Curves of your sample set and determine the <u>Downside Mean Factor</u> on the Y-axis.
- Multiply your analogue Mean by the Percentage on the Y-axis to get your <u>Downside Mean</u>.

Example: 15 well program with P10:P90 = 5

Forecasting Introduces More Uncertainty

Widening Effect due to Model Bias results from:

- Higher correlation between individual results
- Uncertainty of decline parameters

(check out SPE-201556-MS Appropriately Characterizing Uncertainty in Estimated Ultimate Recovery for Unconventional Type Wells)

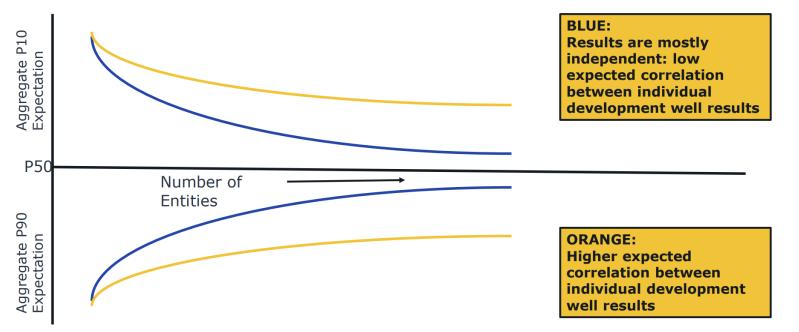
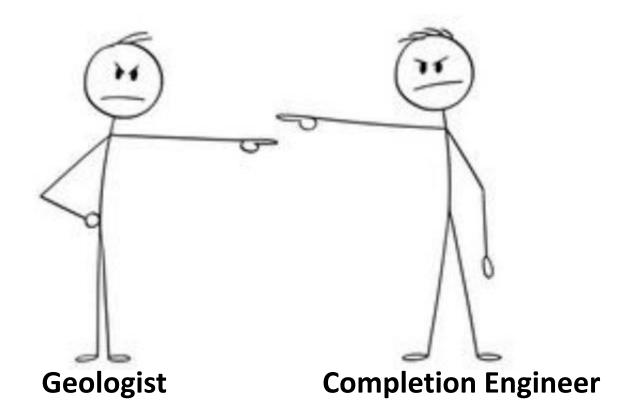


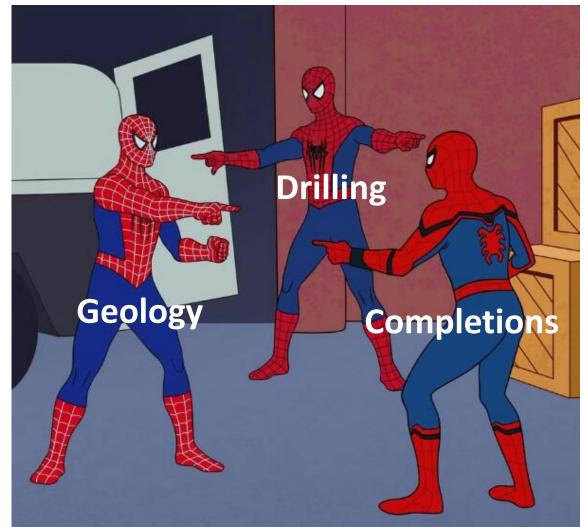
Image courtesy of Tyler Schlosser

7 steps to minimize uncertainty & risk

Monitor & Update Data

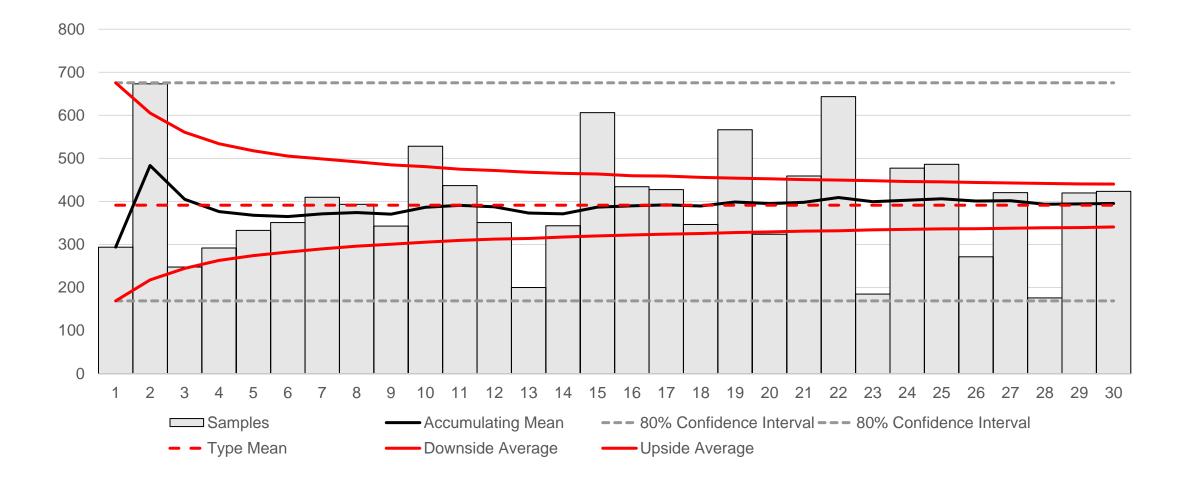

data quality refinement

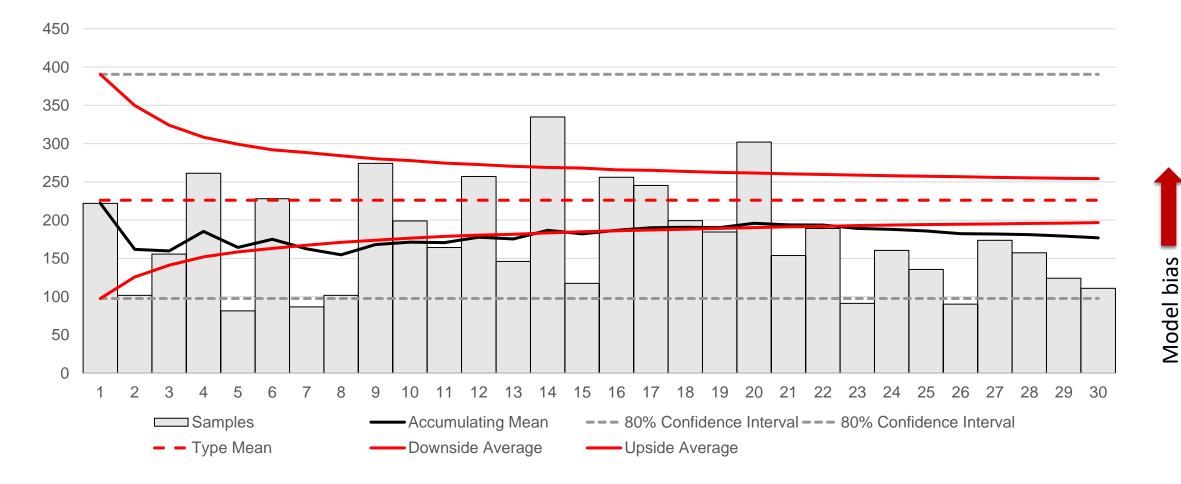
© Omnira Software. All Rights Reserved


Data Quality Refinement

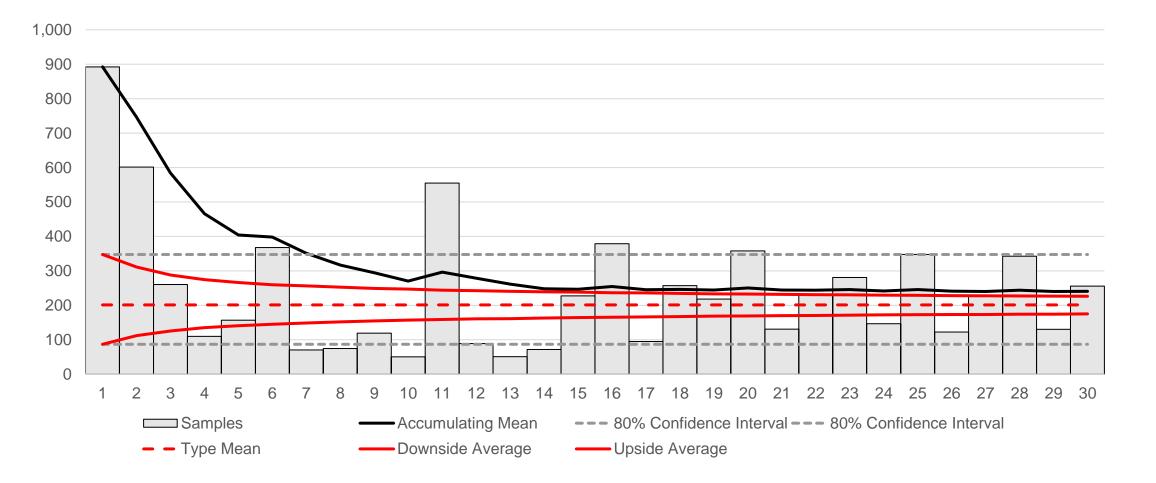
(collaboration & peer reviews)

Data Quality Refinement


(collaboration & peer reviews)


Sequential accumulation plots for performance tracking

- 1) Show the <u>accumulating mean</u> values of well production outcomes in the context of the Trumpet plots
- 2) Most use an <u>early production measure</u> (how well does this correlate to long term production?)
- 3) Reveals how a program is tracking as well-count increases sequentially


Sequential Accumulation (good)

Sequential Accumulation (not so good)

Sequential Accumulation (better than expected)

Model bias

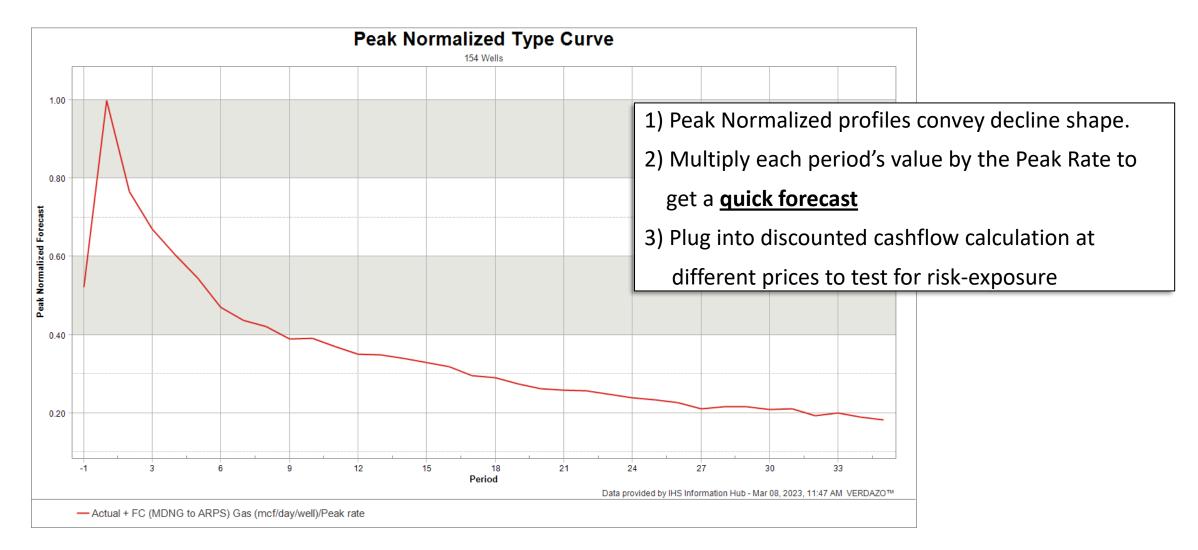
But wait! → This was early production focused

- These Sequential Accumulation plots allowed us to monitor how a program was tracking to expectations & established uncertainty for an early production performance measure.
- What are my best early production measures to use? (see next slide)
- How can I track forecasted production (and value) with limited early production data? (see Peak-Normalized Type Curve slides...)

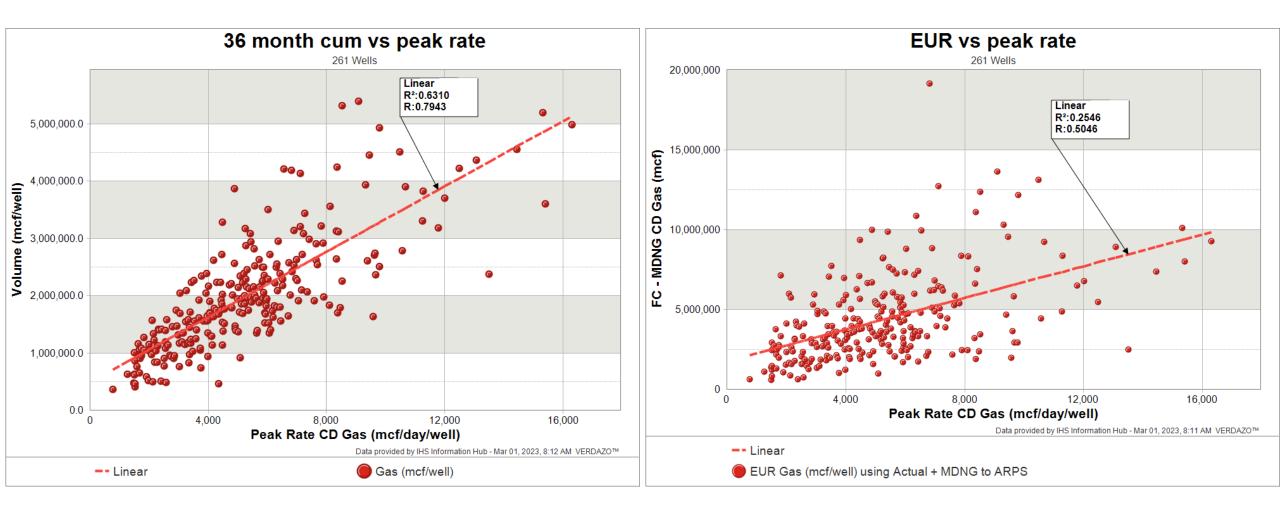
Early Production Correlations to EUR

Analysis of Production Measure	Correlations to	EUR for 4 Plays
--------------------------------	------------------------	------------------------

I'll be using Peak in the example coming up


1																	
			Montney (Gas)				Cardium (Oil) Viking (Oil)			Bakken (Oil)							
		Data Set 1		Data Set 2		Data Set 1		Data Set 2		Data Set 1		Data Set 2		Data Set 1		Data Set 2	
		Correlation %	Well Count	Correlation %	Well Count	Correlation %	Well Count	Correlation %	Well Count	Correlation %	Well Count	Correlation %	Well Count	Correlation %	Well Count	Correlation %	Well Count
	PD Rate (month 1)	10.6	585	18.9	227	33.8	1592	37.7	769	21.8	3098	19.5	818	30.1	1387	30.0	991
	PD Rate (month 1-2)	21.0	584	29.9	226	42.3	1592	49.9	769	28.6	3098	35.3	818	39.5	1387	38.9	991
	PD Rate (month 1-3)	31.2	583	36.7	225	48.1	1592	58.0	769	33.4	3098	45.2	818	46.4	1387	45.1	991
	Peak	60.0	585	50.6	227	53.5	1592	67.0	769	40.1	3098	65.1	818	61.3	1387	65.5	991
	IP30	32.6	585	39.3	227	44.4	1574	56.2	769	30.9	2999	52.3	818	44.8	1387	45.7	991
	IP60	42.7	585	45.2	227	54.8	1573	68.6	769	38.5	2999	59.7	818	51.3	1387	51.4	991
	IP90	49.2	585	49.9	227	60.8	1573	74.2	769	43.5	2999	64.0	818	56.5	1387	56.1	991
	IP180	60.8	576	62.0	227	70.0	1561	80.7	769	53.4	2994	71.0	818	66.6	1387	66.8	991
	IP365	72.4	576	74.9	227	79.9	1561	86.1	769	69.1	2994	79.0	818	77.5	1387	78.8	991
	3 Month Cum	23.2	585	19.4	227	46.9	1592	60.2	769	36.4	3098	58.9	818	52.2	1387	52.2	991
ata	6 Month Cum	49.3	585	45.1	227	65.4	1592	76.6	769	65.4	3098	70.0	818	65.0	1387	64.6	991
1 ĝ	12 Month Cum	67.1	523	67.0	227	77.6	1524	84.8	769	67.8	2563	77.9	818	76.5	1357	77.1	991
Condensed Data	18 Month Cum	75.4	473	76.1	227	82.9	1357	88.7	769	79.4	2002	82.4	818	82.3	1249	84.0	991
la	24 Month Cum	79.7	377	81.6	227	86.7	1233	91.1	769	84.2	1551	85.3	818	88.6	1184	88.3	991
l S	30 Month Cum	83.5	287	85.1	227	90.3	966	92.8	769	87.4	1125	87.5	818	91.1	1067	90.9	991
	36 Month Cum	87.5	227	87.5	227	94.1	769	94.1	769	89.7	818	89.7	818	92.6	991	92.6	991
Data	3 Month Cum	16.4	585	8.9	227	43.8	1592	57.1	769	35.5	3098	56.1	818	51.6	1387	52.0	991
	6 Month Cum	40.3	585	30.5	227	63.8	1592	74.0	769	49.1	3098	64.6	818	63.8	1387	63.5	991
sed	12 Month Cum	59.5	523	56.2	227	77.3	1524	84.5	769	67.3	2563	76.9	818	76.2	1357	76.7	991
condensed	18 Month Cum	71.5	473	70.5	227	82.9	1357	88.6	769	79.3	2002	82.3	818	82.1	1249	83.7	991
l Ö	24 Month Cum	77.5	377	78.4	227	86.7	1233	91.0	769	84.2	1551	85.3	818	88.4	1184	88.0	991
Non-c	30 Month Cum	82.0	287	83.5	227	90.2	966	92.7	769	87.5	1125	87.6	818	90.9	1067	90.7	991
Ž	36 Month Cum	86.4	227	86.4	227	94.1	769	94.1	769	89.8	818	89.8	818	92.4	991	92.4	991

Legend							
86.4	Green = Correlation between 70% and 100%	Data Set 1 = wells with >80% correlation on Modified Duong fits for both "a" and "m" ar	nd >6 months production after peak				
59.5	Yellow = Correlation between 50% and 70%	Data Set 2 = subset of Data Set 1 where all wells have >=36 months production					
40.3	Red = Correlation between 30% and 50%						
16.4	Grey = Correlation between 0% and 30%	Note: Sample sets include only horizontal wells.	www.visageinfo.com				


EUR calculation based on 240 month forecast using Modified Duong auto-forecast up to boundary dominated flow BDF), then transitioning to Arps for remainder of forecast. Gas wells (Montney) used 60 months to BDF and a *b* value of 0.5 for Arps

Oil wells (Cardium, Viking and Bakken) used 48 months to BDF and a **b** value of 0.5 for Arps

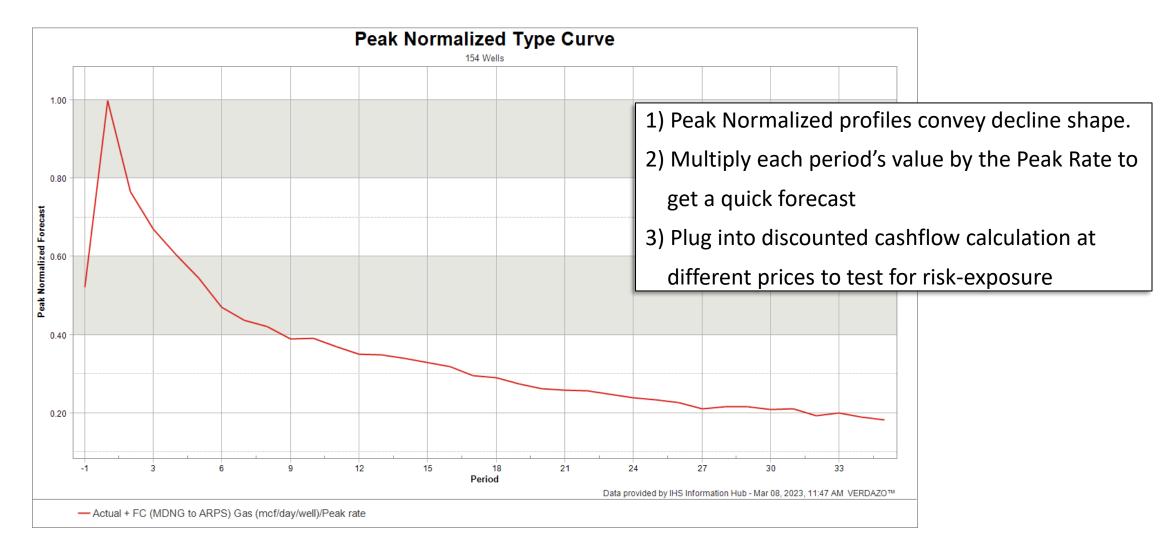
Peak Normalized 36 Month Type Curve

Less Uncertainty in Shorter Forecasts

7 steps to minimize uncertainty & risk

Decision Transparency Show your work

© Omnira Software. All Rights Reserved


Example: Decision Transparency in Risk Assessment

- 1) We have an analogue dataset with similar subsurface features
- 2) We have identified <u>two well design options</u> to assess
- 3) We have mean Peak values & P10:P90 ratios from each well design option's analogue set
- 4) Determine <u>downside factors</u> for each option based on program well count
- 5) We have a <u>Peak Normalized type curve</u> for 36 months
- 6) Calculate <u>volume forecast</u> (scale type curve to Peak and Downside Peak values of each option)
- 7) Test 36-month cashflow against different prices to <u>assess risk-exposure</u>

Agile Risk Assessment Using Downside Mean

		Completion	Completion	
		Option 1	Option 2	
	Length	1,400	1,400	
	Proppant	85	115	35% more proppant
	Frac Spacing	50	50	
	Cost (\$ million)	3.0	3.7	\$700K capital increase (23%)
	Operating Cost (\$/mcf)	1	1	
	Peak (mcf/day)	5,500	6,000	10% production increase
	Analogue Sample Size	60	94	
	P10:P90	3	5	Note different P10:P90
12 well program	Downside Factor	0.84	0.75	
	Downside Peak	4,620	4,500	

Peak Normalized 36 Month Type Curve

Agile Risk Assessment Using Downside Mean

		Option 1	Option 2
Gas Price (\$)		3 yr NPV1	0 \$Million
2.00	using peak rate	-1.14	-1.68
2.00	using downside peak rate	-1.44	-2.18
3.00	using peak rate	0.71	0.35
3.00	using downside peak rate	0.12	-0.66
4.00	using peak rate	2.56	2.37
4.00	using downside peak rate	1.68	0.85
5.00	using peak rate	4.42	4.39
5.00	using downside peak rate	3.23	2.37
6.00	using peak rate	6.27	6.42
6.00	using downside peak rate	4.79	3.89

Completion Completion

While Option 2 yields 10% more production, it is more risk-exposed at prices below \$4/mcf and has a lower downside discounted cashflow even at \$6/mcf.

Option 1: Capital = 12 * \$3 million = \$36 million

Option 2: Capital = 12 * \$3.7 million = \$44.4 million

Would your decision be different using a 20 year forecast?

Completion Completion

		Completion	completion
		Option 1	Option 2
Gas Price (\$)		3 yr NPV1	0 \$Million
2.00	using peak rate	-1.14	-1.68
2.00	using downside peak rate	-1.44	-2.18
3.00	using peak rate	0.71	0.35
3.00	using downside peak rate	0.12	-0.66
4.00	using peak rate	2.56	2.37
4.00	using downside peak rate	1.68	0.85
5.00	using peak rate	4.42	4.39
5.00	using downside peak rate	3.23	2.37
6.00	using peak rate	6.27	6.42
6.00	using downside peak rate	4.79	3.89

Completion	Completion Completion					
Option 1	Option 2					
20 yr NPV1	0 \$Million					
-0.17	-0.62					
-0.63	-1.39					
2.65	2.47					
1.75	0.93					
5.48	5.55					
4.13	3.24					
8.31	8.63					
6.5	5.55					
11.13	11.72					
8.87	7.86					

Completion Completion

	bcf					
EUR using peak	4.1	4.5				
EUR using downside peak rate	3.4	3.4				

While 3 yr NPV10 Option 2 yields 10% more production, it is more riskexposed at prices below \$4/mcf and has a lower downside discounted cashflow even at \$6/mcf.

Option 1: Capital = 12 * \$3 million = \$36 million

Option 2: Capital = 12 * \$3.7 million = \$44.4 million

Summary

What did we accomplish today?

- 1) Pragmatic way to measure uncertainty
- 2) Optimized analogue selection that is focused on impactful-features to reduce uncertainty
- 3) How to measure downside potential of production outcomes using Aggregation Curves
- 4) Benefits of using near-term, higher-confidence, production forecasts for value-driven decisions
- 5) An example of an Agile Risk Assessment process in action

Conclusions

- 1) Including uncertainty & risk in decision making doesn't have to be a lot of extra work
- 2) Fast, less accurate, approaches can be an easy way to test scenarios for risk exposure
- 3) This supports devoting a stronger focus on options that warrant more robust assessments

Including Uncertainty & Risk Analysis in Decision Making

- 1) Don't overwork the problem \rightarrow keep it as simple as you can
- 2) It doesn't replace good engineers & geoscientists
- 3) It doesn't eliminate risk \rightarrow it helps you understand and manage it
- 4) It doesn't replace good judgment → check assumptions & results for reasonability
- 5) Asset Teams must understand it \rightarrow this requires staff "buy-in" and training
- 6) Success depends on management commitment

References

Papers

- SPE-201556-MS Appropriately Characterizing Uncertainty in Estimated Ultimate Recovery for Unconventional Type Wells (Miller, Dauncey & Gouveia)
- SPE-175527-MS Validating Analog Production Type Curves for Resource Plays (McLane & Gouveia)
- SPE-195811-MS Applying Decision Trees to Improve Decision Quality in Unconventional Resource Development (Miller & Gouveia)
- SPE-185053-MS Building Type Wells for Appraisal of Unconventional Resource Plays (Miller, Frechette & Kellett)
- SPE-185077-MS Multivariate Analysis Using Advanced Probabilistic Techniques for Completion Optimization (Groulx, Gouveia & Chenery)

Presentations & Blogs

- Multivariate Analysis Using Advanced Probabilistic Techniques for Completion Optimization
- Understanding Type Curve Complexities and Analytic Techniques
- <u>Uncertainty Considerations for Development Planning Type Curves</u>
- IP90 and the Datasaurus: The dangers of summary statistics
- How useful are IP30, IP60, IP90 ... initial production measures?

7 Steps to Minimize Uncertainty & Risk

- 1. Understanding Uncertainty
- 2. Improving the quality and quantity of data
- 3. Representativeness
- 4. Minimize the Addition of Uncertainty
- 5. Test Downside Scenarios using Aggregation
- 6. Monitor & Update Data
- 7. Decision Transparency

Thank You!

Appendix: additional slides for reference

Additional cautions & considerations

- Caution: assumptions of linearity in scalars
- Caution: inadequate consideration of operational (downtime) reality
- Consider: using broader analogue selection brackets to increase sample size (improves statistical power)

Workflows to Minimize Uncertainty (and Risk) in Type Curve Development

Bertrand Groulx, Omnira Software